Paper | Title | Page |
---|---|---|
SUPCAV014 | Design and Simulation of 500 MHz Single Cell Superconducting Cavity | 46 |
|
||
Funding: Work supported by Shenzhen Development and Reform Commis-sion The Shenzhen Industrial Synchrotron Radiation Light Source is a fourth-generation medium-energy light source with a 3GeV storage ring electron energy and an emit-tance less than 100 pm·rad. In order to ensure the long-term stable and efficient operation of the light source, a new type of 500 MHz single-cell superconducting cavity was designed in this study to be used as a pre-research superconducting cavity for the Light Source. The 500 MHz superconducting cavity has a large beam aperture and low high order modes (HOMs) impedance, which can be used in accelerators with larger currents. In this design, we simply adopted the same design scheme as the KEKB-type and CESR-type superconducting cavity. Using CST electromagnetic field simulation software to calculate and simulate the characteristics of the cavity, the results show that the designed 500 MHz single-cell cavity can meet the requirements of a high acceleration gradient, a high r/Q value, and a low peak surface field. |
||
![]() |
Poster SUPCAV014 [0.425 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPCAV014 | |
About • | Received ※ 21 June 2021 — Revised ※ 07 July 2021 — Accepted ※ 12 August 2021 — Issue date ※ 05 May 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPFAV006 | The Superconducting Radio Frequency System of Shenzhen Industrial Synchrotron Radiation Source FacilityRIAL SYNCHROTRON RADIATION SOURCE FACILITY | 392 |
|
||
Shenzhen industrial synchrotron radiation source is a 3 GeV synchrotron radiation diffraction-limited source. It consists of three parts, linear accelerator, booster, and storage ring. As a basic part of the storage ring, the superconducting radio frequency system provides energy for the beam to supplement the beam power loss caused by synchrotron radiation and higher-order modes, and provide the longitudinal bunch for the electron beam. The superconducting radio frequency cavity of the storage ring consists of two 500 MHz single-cell cavities and a third harmonic 1500 MHz double-cell cavity. This paper will introduce the superconducting cavity, radio frequency amplifier, and low-level radio frequency system in the Shenzhen industrial synchrotron radiation source facility. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPFAV006 | |
About • | Received ※ 20 June 2021 — Revised ※ 16 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 26 November 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
SUPCAV010 | Design of Third-Harmonic Superconducting Cavity for Shen-Zhen Industry Synchrotyon Radiation Source7 | 32 |
|
||
Shenzhen industry synchrotron radiation source is the fourth generation of medium energy light source with beam energy of 3GeV. It has the characteristics of low emittance and high brightness. In the design, the beam lifetime is one of the most important parameters. The main factor that affects its beam lifetime is the scattering of electron collisions inside the beam. To solve this problem, a harmonic radio frequency system is used. The third harmonic superconducting elliptical cavity is de-signed to stretch beam length to improve beam quality and beam lifetime. The present work is mainly about the shape optimization of 1.5 GHz 2-cell third harmonic superconducting elliptical cavity. Firstly, the principle of harmonic cavity in dual high frequency system is introduced, and the resonant frequency and acceleration gradient of superconducting cavity are given. Then, CST, electromagnetic field simulation software is used to optimize the cavity parameters to obtain the high performance and high frequency parameters that meet the requirements. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPCAV010 | |
About • | Received ※ 21 June 2021 — Revised ※ 21 November 2021 — Accepted ※ 18 February 2022 — Issue date ※ 03 May 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |