Paper | Title | Page |
---|---|---|
MOPCAV005 | Status of SNS Proton Power Upgrade SRF Cavities Production Qualification | 265 |
|
||
The Proton Power Upgrade project at Oak Ridge National Lab’s Spallation Neutron Source (SNS PPU) currently being constructed will double the proton beam power from 1.4 to 2.8 MW by adding 7 additional cryomodules, each contains four six-cell high beta (\beta = 0.81) superconducting radio frequency cavities. The cavities were built by Research Instruments, Germany, with all the cavity processing done at the vendor site, including electropolishing as the final active chemistry step. All 28 cavities needed for 7 cryomodules were delivered to Jefferson Lab, ready to be tested. The cryogenic RF qualifications and helium vessel welding were done at Jefferson Lab. The performance largely exceed the requirements, and greatly exceeded the performance of the original SNS cavity production series. Here, we present the summary of RF test on production cavities to this date.
This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. |
||
![]() |
Poster MOPCAV005 [1.065 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPCAV005 | |
About • | Received ※ 19 June 2021 — Revised ※ 10 July 2021 — Accepted ※ 12 March 2022 — Issue date ※ 06 April 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPCAV008 | Results From the Proton Power Upgrade Project Cavity Quality Assurance Plan | 801 |
|
||
Funding: UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE) The Proton Power Upgrade (PPU) Project at Oak Ridge National Lab’s Spallation Neutron Source (SNS) is currently under construction. The project will double the beam power from 1.4 to 2.8 MW. This is accomplished by increasing the beam current and adding seven new Superconducting Radio Frequency (SRF) cryomodules. Each new cryomodule will contain four six-cell, beta 0.81, PPU style cavities. A quality assurance plan was developed and implemented for the procurement of 32 PPU cavities. As part of this plan, reference cavities were qualified and sent to Research Instruments Co. for the development and verification of process steps. Here we present the results from this plan to date. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPCAV008 | |
About • | Received ※ 04 June 2021 — Accepted ※ 06 September 2021 — Issue date ※ 16 May 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |