Paper | Title | Page |
---|---|---|
MOOFAV06 | Four Years of Successful Operation of the European XFEL | 190 |
|
||
The European X-Ray Free-Electron Laser (EuXFEL) has been successfully operating for almost 4 years, and routinely delivering 6- to 14-KeV X-rays to users (30 KeV photon energy was demonstrated). At the heart of the machine is the 1.3 km long 1.3 GHz SCRF linac which can reach a maximum electron energy of 17.6 GeV, and is capable of accelerating up to 2700 bunches per RF pulse at a repetition rate of 10 Hz, delivering beam to 6 experiments via 3 SASE undulator sections. In this contribution, we relate on the linac operational experience and highlight some recent developments towards monitoring and improving operations and linac availability. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOOFAV06 | |
About • | Received ※ 18 June 2021 — Accepted ※ 18 August 2021 — Issue date ※ 18 September 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPFAV001 |
Overview of CW R&D With a European XFEL Cryomodule | |
|
||
Since 2011 a research and development program is carried out at DESY to study the feasibility of a possible Continuous-Wave (CW) upgrade of the European X-ray Free Electron Laser (XFEL). Cryo-Module Test Bench (CMTB) is a test facility at DESY used to perform tests with accelerating modules equipped with TESLA-type superconducting cavities. In this proceeding, the most recent tests at CMTB on module XM50.1 are presented. For the European XFEL upgrade, a key-importance question to answer is the cryomodules’ heat load when driven in CW. Therefore, tests at accelerating gradients up to 19 MV/m per cavity at 2K were carried to determine the cavities’ dissipated power. Operating at QLs > 107 is also challenging for the LLRF: the narrow RF bandwidths involved require active online detuning disturbances rejection techniques. Therefore a new detuning estimator was developed. The estimator is also capable of working as a quench/multipacting detector. Tests on XM50.1 show that it is possible to estimate detuning disturbances with a sub-hertz precision and to catch multipacting events. Finally, the maximum achieved gradients with the module and after RF conditioning are presented. | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |