JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for WEPFDV005: Tensile Tests of Large Grain Ingot Niobium at Liquid Helium Temperature

@inproceedings{yamanaka:srf2021-wepfdv005,
  author       = {M. Yamanaka and K. Enami},
  title        = {{Tensile Tests of Large Grain Ingot Niobium at Liquid Helium Temperature}},
  booktitle    = {Proc. SRF'21},
% booktitle    = {Proc. 20th International Conference on RF Superconductivity (SRF'21)},
  pages        = {562--565},
  eid          = {WEPFDV005},
  language     = {english},
  keywords     = {niobium, cavity, experiment, SRF, superconducting-cavity},
  venue        = {East Lansing, MI, USA},
  series       = {International Conference on RF Superconductivity},
  number       = {20},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {10},
  year         = {2022},
  issn         = {2673-5504},
  isbn         = {978-3-95450-233-2},
  doi          = {10.18429/JACoW-SRF2021-WEPFDV005},
  url          = {https://jacow.org/srf2021/papers/wepfdv005.pdf},
  abstract     = {{Tensile tests at liquid He temperature were performed using specimen taken from high purity large grain niobium ingot produced by CBMM. The measured RRR is 242. The ingot is 260 mm in diameter and sliced by a multi wire saw to 2.8 thickness. 5 specimens were cut off from one sliced disk. 3 disks were set in same phase to obtain same grain distribution. 3 specimens each of 5 grain patterns 5, 15 in total were used for the tensile test. The tensile test stand using a cryostat and liquid He was manufactured by ourselves. The measured tensile strength varied 379 to 808 MPa. The average value is 611 MPa. The tensile strength at room temperature is 84 MPa. The strength becomes high at low temperature like a fine grain niobium. The specimen includes a grain boundary, and causes the variation of strength. The different result was obtained in same grain patterns. The relationship between crystal orientation and strength is discussed.}},
}