JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for WEPFAV006: ILC Energy Upgrade Paths to 3 TeV

@inproceedings{padamsee:srf2021-wepfav006,
  author       = {H. Padamsee},
  title        = {{ILC Energy Upgrade Paths to 3 TeV}},
  booktitle    = {Proc. SRF'21},
% booktitle    = {Proc. 20th International Conference on RF Superconductivity (SRF'21)},
  pages        = {549--555},
  eid          = {WEPFAV006},
  language     = {english},
  keywords     = {cavity, linac, SRF, klystron, cryomodule},
  venue        = {East Lansing, MI, USA},
  series       = {International Conference on RF Superconductivity},
  number       = {20},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {10},
  year         = {2022},
  issn         = {2673-5504},
  isbn         = {978-3-95450-233-2},
  doi          = {10.18429/JACoW-SRF2021-WEPFAV006},
  url          = {https://jacow.org/srf2021/papers/wepfav006.pdf},
  abstract     = {{We consider ILC upgrade paths beyond 1 TeV: (1) to 2 TeV and (2) to 3 TeV depending on the needs of high energy physics. Parameters for four scenarios will be presented and challenges discussed. 1. From 1 TeV to 2 TeV based on: a. Gradient advances of Nb cavities to 55 MV/m anticipated from on-going SRF R&D on Nb structures discussed in Section 4.3.x. b. Radically new travelling wave (TW) superconducting structures [1,2] optimized for effective gradients of 70+ MV/m, along with 100% increase in R/Q (discussed in more detail in Section 4.3.x). The large gain in R/Q has a major beneficial impact on the refrigerator heat load, the RF power, and the AC operating power. OR 2. From 1 TeV to 3 TeV based on a. Radically new travelling wave (TW) superconducting structures [1,2] optimized for effective gradients of 70+ MV/m, along with 100% increase in R/Q. The large gain in R/Q has a major beneficial impact on heat load, RF power, and the AC operating power. b. 80 MV/m gradient potential for Nb₃Sn [3] with Q of 1x10¹⁰, based on extrapolations from high power pulsed measurements on single cell Nb₃Sn cavities. Further, the operating temperature is 4.2 K instead of 2K.}},
}