A Ferroelectric Fast Reactive Tuner for Superconducting Cavities

N. Shipman¹, J. Bastard¹, M. Coly¹, F. Gerigk¹, A. Macpherson¹, N. Stapley¹, I. Ben-Zvi², C. Jing³, A. Kanareykin³, G. Burt⁴, A. Castilla⁴, S. Kazakov⁵, E. Nenasheva⁶

¹CERN, ²Brookhaven National Laboratory, ³Euclid Techlabs LLC, ⁴Lancaster University, ⁵Fermi National Accelerator Laboratory, ⁶Ceramics Ltd.

SRF, July 2019
FE-FRT: A new type of tuner.

- New class of tuner.
FE-FRT: A new type of tuner.

- New class of tuner.
- Fast (really fast).
FE-FRT: A new type of tuner.

- New class of tuner.
- Fast (really fast).
- No moving parts.
FE-FRT: A new type of tuner.

- New class of tuner.
- Fast (really fast).
- No moving parts.
- Low losses.
FE-FRT: A new type of tuner.

- New class of tuner.
- Fast (really fast).
- No moving parts.
- Low losses.
- Outside cryomodule.
FE-FRT: A new type of tuner.

- New class of tuner.
- Fast (really fast).
- No moving parts.
- Low losses.
- Outside cryomodule.

- Eliminate microphonics.
FE-FRT: A new type of tuner.

- New class of tuner.
- Fast (really fast).
- No moving parts.
- Low losses.
- Outside cryomodule.

- Eliminate microphonics.
- Reduce power.

New class of tuner.
Fast (really fast).
No moving parts.
Low losses.
Outside cryomodule.

- Eliminate microphonics.
- Reduce power.
FE-FRT: A new type of tuner.

- New class of tuner.
- Fast (really fast).
- No moving parts.
- Low losses.
- Outside cryomodule.

- Eliminate microphonics.
- Reduce power.
- ERLs.
FE-FRT: A new type of tuner.

- New class of tuner.
- Fast (really fast).
- No moving parts.
- Low losses.
- Outside cryomodule.

- Eliminate microphonics.
- Reduce power.
- ERLs.
- Heavy ion.
FE-FRT: A new type of tuner.

- New class of tuner.
- Fast (really fast).
- No moving parts.
- Low losses.
- Outside cryomodule.
- Eliminate microphonics.
- Reduce power.
- ERLs.
- Heavy Ion.
- Nb$_3$Sn/New Materials.
Thank you for Listening.

Any Questions?
A Ferroelectric Fast Reactive Tuner

N. Shipman

Reactive Tuners

Ferroelectric Material

Applications

Prototype Tuner

Experimental Results

Conclusion
How does it work?

\[\Delta \omega_{12} = -\omega_0 \Delta B' t_{12} R/4 N^2 \]

\[\Delta BW_n = G't_n N^2 C c \]
How does it work?

\[
\Delta \omega = -\omega_0 \Delta B_t \frac{R}{Q^4 N^2}
\]

\[
\Delta B_W = G't' n N^2 C_c
\]
How does it work?

\[\Delta \omega_{12} = -\omega_0 \Delta B'_{t12} \frac{R}{Q} \frac{1}{4N^2} \]

\[\Delta BW_n = \frac{G'_{tn}}{N^2 C_c} \]
How does it work?

State Ratio\(_n\) = \(\frac{\Delta \omega_{12}}{\Delta \text{BW}_{n}}\)

State Ratio\(_n\) = \(\frac{\Delta B_t}{2G_{tn}}\)

State Ratio\(_n\) = \(\frac{\Delta B_t}{2G_{tn}}\)
How does it work?

State Ratio \(_n\) = \(\frac{\Delta \omega_{12}}{\Delta BW_n}\)

State Ratio \(_n\) = \(\frac{\Delta B_t}{2G_{tn}}\)

\[
\text{FoM} = \sqrt{\text{SR}_1 \times \text{SR}_2}
\]

\[
\text{FoM} = \sqrt{\frac{(\Delta B_t)^2}{4G_1 G_2}}
\]
How does it work?

State Ratio \(_n\) = \(\frac{\Delta \omega_{12}}{\Delta BW_n}\)

State Ratio \(_n\) = \(\frac{\Delta B_t}{2G_{tn}}\)

FoM = \(\sqrt{SR_1 \times SR_2}\)

FoM = \(\sqrt{\frac{(\Delta B_t)^2}{4G_1 G_2}}\)

FoM = \(\text{Tuning Range}\)

Geometric Average of increase in BW
How does it work?

State Ratio\(_n\) = \(\frac{\Delta \omega_{12}}{\Delta BW_n}\)

State Ratio\(_n\) = \(\frac{\Delta B_t}{2G_{tn}}\)

FoM\(_n\) = \(\sqrt{SR_1 \times SR_2}\)

FoM\(_n\) = \(\sqrt{\frac{(\Delta B_t)^2}{4G_1G_2}}\)

FoM = \(\frac{\Delta \omega_{12}}{\sqrt{\Delta BW_1 \Delta BW_2}} \approx \frac{2|\sin \frac{\Delta \theta_{12}}{2}|}{\sqrt{(1 - |\Gamma_1|^2)(1 - |\Gamma_2|^2)}}\)
Other Reactive Tuners

Pin Diode Tuners

D. Schulze et al., in *Proc. 1972 Proton Linear Accelerator Conference*, Los Alamos, NM, USA, October 1972, G01, pp. 156–162.

Ferrite Tuners

Why use a ferroelectric?

- No moving parts
- Outside cryostat
Why use a ferroelectric?

- No moving parts
- Outside cryostat
- Continuous tuning range
Why use a ferroelectric?

- No moving parts
- Outside cryostat
- Continuous tuning range
- No need to generate a large magnetic field
Why use a ferroelectric?

- No moving parts
- Outside cryostat
- Continuous tuning range
- No need to generate a large magnetic field
- Intrinsic speed $< 10 \text{ ns}^1$

Why use a ferroelectric?

- No moving parts
- Outside cryostat
- Continuous tuning range
- No need to generate a large magnetic field
- Intrinsic speed $< 10\text{ ns}^1$
- Low losses/small increased bandwidth

Why use a ferroelectric?

- No moving parts
- Outside cryostat
- Continuous tuning range
- No need to generate a large magnetic field
- Intrinsic speed $< 10 \text{ ns}^1$
- Low losses/small increased bandwidth
- So why hasn’t this been done before?

Newly Developed Ferroelectric

- Suitable material only recently developed.\(^2\)

Suitable material only recently developed.\(^2\)
- BaTiO\(_3\) - SrTiO\(_3\) solid solution (BST)

Newly Developed Ferroelectric

- Suitable material only recently developed.\(^2\)
 - \(\text{BaTiO}_3 - \text{SrTiO}_3\) solid solution (BST)
 - Added linear (non-tunable) \(\text{Mg}\)-based ceramic component\(^3\)

Suitable material only recently developed.\(^2\)

- \(\text{BaTiO}_3 - \text{SrTiO}_3\) solid solution (BST)
- Added linear (non-tunable) Mg-based ceramic component\(^3\)
- Enhanced tunability with low losses

Newly Developed Ferroelectric

- Suitable material only recently developed.\(^2\)
 - \(\text{BaTiO}_3 - \text{SrTiO}_3\) solid solution (BST)
 - Added linear (non-tunable) Mg-based ceramic component\(^3\)
 - Enhanced tunability with low losses

Table: Material Properties at \(\approx 800\) MHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. (\epsilon_r)</td>
<td>140</td>
</tr>
<tr>
<td>Min. (\epsilon_r)</td>
<td>131.6</td>
</tr>
<tr>
<td>(\tan \delta)</td>
<td>(9.1 \times 10^{-4})</td>
</tr>
<tr>
<td>(\Delta \epsilon_r / E)</td>
<td>0.6 kV(^{-1}) cm</td>
</tr>
<tr>
<td>(\tau)</td>
<td>(< 10) ns</td>
</tr>
</tbody>
</table>

Where is an FE-FRT likely to be most useful?

- Low beam loading machines
Where is an FE-FRT likely to be most useful?

- Low beam loading machines
- ERLs
Where is an FE-FRT likely to be most useful?

- Low beam loading machines
- ERLs
- Heavy Ion Accelerators
Where is an FE-FRT likely to be most useful?

- Low beam loading machines
- ERLs
- Heavy Ion Accelerators
- If repetitive mechanical stresses must be avoided
Where is an FE-FRT likely to be most useful?

- Low beam loading machines
- ERLs
- Heavy Ion Accelerators
- If repetitive mechanical stresses must be avoided
- Whenever you need really fast tuning

Table: Material Properties at \(\approx 800 \text{ MHz} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. (\epsilon_r)</td>
<td>140</td>
</tr>
<tr>
<td>Min. (\epsilon_r)</td>
<td>131.6</td>
</tr>
<tr>
<td>(\tan \delta)</td>
<td>(9.1 \times 10^{-4})</td>
</tr>
<tr>
<td>(\frac{\Delta \epsilon_r}{E})</td>
<td>0.6 kV(^{-1}) cm</td>
</tr>
<tr>
<td>(\tau)</td>
<td>(< 10 \text{ ns})</td>
</tr>
</tbody>
</table>
Where is an FE-FRT likely to be most useful?

- Low beam loading machines
- ERLs
- Heavy Ion Accelerators
- If repetitive mechanical stresses must be avoided
- Whenever you need really fast tuning
- Where easy maintainability is a key concern
Table: PERLE SC 5-cell Cavity Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_0</td>
<td>801.58 MHz</td>
</tr>
<tr>
<td>Q_0</td>
<td>2×10^{10}</td>
</tr>
<tr>
<td>R/Q</td>
<td>393 Ω</td>
</tr>
<tr>
<td>U_c</td>
<td>141 J</td>
</tr>
<tr>
<td>Q_{FPC}</td>
<td>10^7</td>
</tr>
<tr>
<td>P_{RF}</td>
<td>45 kW</td>
</tr>
<tr>
<td>Max. Δf_μ</td>
<td>40 Hz</td>
</tr>
</tbody>
</table>
PERLE Case Study

Table: PERLE SC 5-cell Cavity Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_0</td>
<td>801.58 MHz</td>
</tr>
<tr>
<td>Q_0</td>
<td>2×10^{10}</td>
</tr>
<tr>
<td>R/Q</td>
<td>393 Ω</td>
</tr>
<tr>
<td>U_c</td>
<td>141 J</td>
</tr>
<tr>
<td>Q_{FPC}</td>
<td>10^7</td>
</tr>
<tr>
<td>P_{RF}</td>
<td>45 kW</td>
</tr>
<tr>
<td>Max. Δf_μ</td>
<td>40 Hz</td>
</tr>
</tbody>
</table>

Table: Material Properties at ≈ 800 MHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. ϵ_r</td>
<td>140</td>
</tr>
<tr>
<td>Min. ϵ_r</td>
<td>131.6</td>
</tr>
<tr>
<td>$\tan \delta$</td>
<td>9.1×10^{-4}</td>
</tr>
<tr>
<td>$\Delta \epsilon_r / E$</td>
<td>0.6 $kV^{-1} cm$</td>
</tr>
<tr>
<td>σ_{Cu}</td>
<td>5.96×10^{-7} S/m</td>
</tr>
</tbody>
</table>
PERLE Case Study

Table: PERLE SC 5-cell Cavity Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_0</td>
<td>801.58 MHz</td>
</tr>
<tr>
<td>Q_0</td>
<td>2×10^{10}</td>
</tr>
<tr>
<td>R/Q</td>
<td>393 Ω</td>
</tr>
<tr>
<td>U_c</td>
<td>141 J</td>
</tr>
<tr>
<td>Q_{FPC}</td>
<td>10^7</td>
</tr>
<tr>
<td>P_{RF}</td>
<td>45 kW</td>
</tr>
<tr>
<td>Max. Δf_{μ}</td>
<td>40 Hz</td>
</tr>
</tbody>
</table>

Table: Material Properties at ≈ 800 MHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. ϵ_r</td>
<td>140</td>
</tr>
<tr>
<td>Min. ϵ_r</td>
<td>131.6</td>
</tr>
<tr>
<td>$\tan \delta$</td>
<td>9.1×10^{-4}</td>
</tr>
<tr>
<td>$\Delta \epsilon_r/E$</td>
<td>0.6 kV$^{-1}$cm</td>
</tr>
<tr>
<td>σ_{Cu}</td>
<td>5.96×10^{-7} S/m</td>
</tr>
</tbody>
</table>
PERLE Case Study

Table: PERLE SC 5-cell Cavity Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_0</td>
<td>801.58 MHz</td>
</tr>
<tr>
<td>Q_0</td>
<td>2×10^{10}</td>
</tr>
<tr>
<td>R/Q</td>
<td>393 Ω</td>
</tr>
<tr>
<td>U_c</td>
<td>141 J</td>
</tr>
<tr>
<td>Q_{FPC}</td>
<td>10^7</td>
</tr>
<tr>
<td>P_{RF}</td>
<td>45 kW</td>
</tr>
<tr>
<td>Max. Δf_μ</td>
<td>40 Hz</td>
</tr>
</tbody>
</table>

Table: Material Properties at ≈ 800 MHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. ϵ_r</td>
<td>140</td>
</tr>
<tr>
<td>Min. ϵ_r</td>
<td>131.6</td>
</tr>
<tr>
<td>$\tan \delta$</td>
<td>9.1×10^{-4}</td>
</tr>
<tr>
<td>$\frac{\Delta \epsilon_r}{E}$</td>
<td>0.6 kV$^{-1}$cm</td>
</tr>
<tr>
<td>σ_{Cu}</td>
<td>5.96×10^{-7} S/m</td>
</tr>
</tbody>
</table>

Monte Carlo method applied to FE-FRT Transmission Line Model for 801.58 MHz.
PERLE Case Study

\[P_{RF} = \frac{V_c^2}{4R/Q/Q_L} \frac{\beta + 1}{\beta} \left[1 + \left(2Q_L \frac{\Delta \omega}{\omega_0} \right)^2 \right] \]
PERLE Case Study

\[P_{RF} = \frac{V_c^2}{4R/Q Q_L} \frac{\beta + 1}{\beta} \left[1 + \left(2Q L \frac{\Delta \omega \mu}{\omega_0} \right)^2 \right] \]

\[P_f vs Q_{FPC} \] for PERLE. Without tuner and with tuner.
PERLE Case Study

\[P_{RF} = \frac{V_c^2}{4 R/Q L} \frac{\beta + 1}{\beta} \left[1 + \left(\frac{2 Q L}{\omega_0} \frac{\Delta \omega}{\mu} \right)^2 \right] \]

Table: FE-FRT properties for PERLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM</td>
<td>30</td>
</tr>
<tr>
<td>(\Delta f_t)</td>
<td>80</td>
</tr>
<tr>
<td>(Q_{FPC})</td>
<td>(3 \times 10^8)</td>
</tr>
<tr>
<td>(P_{RF})</td>
<td>3 kW</td>
</tr>
<tr>
<td>(P_t)</td>
<td>2.4 kW</td>
</tr>
<tr>
<td>Max. (P_t)</td>
<td>71 kVar</td>
</tr>
</tbody>
</table>

\(P_f \) vs \(Q_{FPC} \) for PERLE. **Without tuner and with tuner.**
PERLE Case Study

\[P_{RF} = \frac{V_c^2}{4R/Q} \frac{\beta + 1}{\beta} \left[1 + \left(2Q_L \frac{\Delta \omega \mu}{\omega_0} \right)^2 \right] \]

Table: FE-FRT properties for PERLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM</td>
<td>30</td>
</tr>
<tr>
<td>(\Delta f_t)</td>
<td>80</td>
</tr>
<tr>
<td>(Q_{FPC})</td>
<td>(3 \times 10^8)</td>
</tr>
<tr>
<td>(P_{RF})</td>
<td>3 kW</td>
</tr>
<tr>
<td>(P_t)</td>
<td>2.4 kW</td>
</tr>
<tr>
<td>Max. (P_t)</td>
<td>71 kVar</td>
</tr>
</tbody>
</table>

\(P_f \) vs \(Q_{FPC} \) for PERLE. Without tuner and with tuner.

- \(\approx 15 \) fold reduction in RF power
PERLE Case Study

\[P_{RF} = \frac{V_c^2}{4 R/Q Q L} \frac{\beta + 1}{\beta} \left[1 + \left(2 Q L \frac{\Delta \omega}{\omega_0} \right)^2 \right] \]

Table: FE-FRT properties for PERLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM</td>
<td>30</td>
</tr>
<tr>
<td>(\Delta f_t)</td>
<td>80</td>
</tr>
<tr>
<td>(Q_{FPC})</td>
<td>(3 \times 10^8)</td>
</tr>
<tr>
<td>(P_{RF})</td>
<td>3 kW</td>
</tr>
<tr>
<td>(P_t)</td>
<td>2.4 kW</td>
</tr>
<tr>
<td>Max. (P_t)</td>
<td>71 kVar</td>
</tr>
</tbody>
</table>

\(P_f \) vs \(Q_{FPC} \) for PERLE. Without tuner and with tuner.

- \(\approx \) 15 fold reduction in RF power
- We can do even better at lower frequencies!
PERLE Case Study

\[P_{RF} = \frac{V_c^2}{4R/Q Q L} \left(\frac{\beta + 1}{\beta} \right) \left[1 + \left(2Q_L \frac{\Delta \omega_\mu}{\omega_0} \right)^2 \right] \]

Table: FE-FRT properties for PERLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM</td>
<td>30</td>
</tr>
<tr>
<td>(\Delta f_t)</td>
<td>80</td>
</tr>
<tr>
<td>(Q_{FPC})</td>
<td>(3 \times 10^8)</td>
</tr>
<tr>
<td>(P_{RF})</td>
<td>3 kW</td>
</tr>
<tr>
<td>(P_t)</td>
<td>2.4 kW</td>
</tr>
<tr>
<td>Max. (P_t)</td>
<td>71 kVar</td>
</tr>
</tbody>
</table>

\(P_f \) vs \(Q_{FPC} \) for PERLE. Without tuner and with tuner.

- \(\approx \) 15 fold reduction in RF power
- We can do even better at lower frequencies!
- \(\alpha_d = 9.11 \times 10^{-8} f \sqrt{\varepsilon_r} \tan \delta \)
PERLE Case Study

\[P_{RF} = \frac{V_c^2}{4R/Q Q L} \frac{\beta + 1}{\beta} \left[1 + \left(2Q L \frac{\Delta \omega \mu}{\omega_0} \right)^2 \right] \]

\[P_f \text{ vs } Q_{FPC} \text{ for PERLE. Without tuner and with tuner.} \]

- \(\approx 15 \) fold reduction in RF power
- We can do even better at lower frequencies!
- \(\alpha_d = 9.11 \times 10^{-8} f \sqrt{\epsilon_r \tan \delta} \)
- \(\tan \delta \propto f \)

Table: FE-FRT properties for PERLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM</td>
<td>30</td>
</tr>
<tr>
<td>(\Delta f_t)</td>
<td>80</td>
</tr>
<tr>
<td>(Q_{FPC})</td>
<td>(3 \times 10^8)</td>
</tr>
<tr>
<td>(P_{RF})</td>
<td>3 kW</td>
</tr>
<tr>
<td>(P_t)</td>
<td>2.4 kW</td>
</tr>
<tr>
<td>Max. (P_t)</td>
<td>71 kVar</td>
</tr>
</tbody>
</table>
PERLE Case Study

\[P_{RF} = \frac{V_c^2}{4R/Q L} \frac{\beta + 1}{\beta} \left[1 + \left(2Q L \frac{\Delta \omega \mu}{\omega_0} \right)^2 \right] \]

Table: FE-FRT properties for PERLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM</td>
<td>30</td>
</tr>
<tr>
<td>(\Delta f_t)</td>
<td>80</td>
</tr>
<tr>
<td>(Q_{FPC})</td>
<td>(3 \times 10^8)</td>
</tr>
<tr>
<td>(P_{RF})</td>
<td>3 kW</td>
</tr>
<tr>
<td>(P_t)</td>
<td>2.4 kW</td>
</tr>
<tr>
<td>Max. (P_t)</td>
<td>71 kVar</td>
</tr>
</tbody>
</table>

\(P_f\) vs \(Q_{FPC}\) for PERLE. Without tuner and with tuner.

- \(\approx 15\) fold reduction in RF power
- We can do even better at lower frequencies!
- \(\alpha_d = 9.11 \times 10^{-8} f \sqrt{\epsilon_r \tan \delta}\)
- \(\tan \delta \propto f\)
- Dielectric losses \(\propto f^2\)
Prototype Tuner, 3D model and transmission line model.
Experimental Setup
Experimental Setup

FE-FRT mounted on cryostat.

Cryostat insert.
FE-FRT mounted on cryostat.

Cryostat insert.
FE-FRT mounted on cryostat.

Cryostat insert.
Experimental Setup

FE-FRT mounted on cryostat.

Cryostat insert.
FE-FRT mounted on cryostat.
Demonstration of Frequency Tuning

Signal analyser measurement.

Experimental Setup.
Demonstration of Frequency Tuning

Signal analyser measurement.

Frequency calculated from I and Q measurements.

Experimental Setup.

A Ferroelectric Fast Reactive Tuner

N. Shipman

Reactive Tuners
Ferroelectric Material
Applications
Prototype Tuner
Experimental Results
Conclusion
Timescale of Frequency Shift

Fall time and $\text{std}(f)$ vs. regression window length.
A Ferroelectric Fast Reactive Tuner

N. Shipman

Reactive Tuners
Ferroelectric Material
Applications
Prototype Tuner
Experimental Results
Conclusion

Timescale of Frequency Shift

- Cavity response to tuner $< 50 \mu s$

Fall time and $\text{std}(f)$ vs. regression window length.
Cavity response to tuner < 50 µs

Cavity time constant
\[\tau_L = \frac{Q_L}{\omega_0} \approx 46 \text{ ms} \]

Fall time and \(\text{std}(f) \) vs. regression window length.
Timescale of Frequency Shift

Cavity response to tuner $< 50 \mu s$

Cavity time constant $\tau_L = \frac{Q_L}{\omega_0} \approx 46 \text{ ms}$

Cavity responds faster to FE-FRT than τ_L.

Fall time and $\text{std}(f)$ vs. regression window length.
Tested an FE-FRT with SC RF Cavity: World First!
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
- Extremely fast $< 50 \mu s$
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
- Extremely fast $<< 50 \, \mu s$
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
- Extremely fast $<< 50 \mu s$
 - Not limited by cavity time constant.
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
- Extremely fast $\ll 50 \mu s$
 - Not limited by cavity time constant.
- Eliminate microphonics, drastically reducing power requirements for low beam loading machines.
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
- Extremely fast \(<50\,\mu s\)
 - Not limited by cavity time constant.
- Eliminate microphonics, drastically reducing power requirements for low beam loading machines.
- Outside cryomodule, no moving parts \(\rightarrow\) easy maintenance and high reliability
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
- Extremely fast $<< 50 \mu s$
 - Not limited by cavity time constant.
- Eliminate microphonics, drastically reducing power requirements for low beam loading machines.
- Outside cryomodule, no moving parts \rightarrow easy maintenance and high reliability
- Ease design and reduce cost of:
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
- Extremely fast $<< 50\,\mu s$
 - Not limited by cavity time constant.
- Eliminate microphonics, drastically reducing power requirements for low beam loading machines.
- Outside cryomodule, no moving parts \rightarrow easy maintenance and high reliability
- Ease design and reduce cost of:
 - Power Couplers
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
- Extremely fast $<< 50 \mu s$
 - Not limited by cavity time constant.
- Eliminate microphonics, drastically reducing power requirements for low beam loading machines.
- Outside cryomodule, no moving parts \rightarrow easy maintenance and high reliability
- Ease design and reduce cost of:
 - Power Couplers
 - Cryomodules
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
- Extremely fast $<< 50 \mu s$
 - Not limited by cavity time constant.
- Eliminate microphonics, drastically reducing power requirements for low beam loading machines.
- Outside cryomodule, no moving parts \rightarrow easy maintenance and high reliability
- Ease design and reduce cost of:
 - Power Couplers
 - Cryomodules
 - Cavities
Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent, no further material development needed.
- Extremely fast $<< 50 \mu s$
 - Not limited by cavity time constant.
- Eliminate microphonics, drastically reducing power requirements for low beam loading machines.
- Outside cryomodule, no moving parts \rightarrow easy maintenance and high reliability
- Ease design and reduce cost of:
 - Power Couplers
 - Cryomodules
 - Cavities
 - RF power sources
Thank you for listening.

Any Questions?