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FE-FRT: A new type of tuner.

New class of tuner.

Fast (really fast).
No moving parts.
Low losses.
Outside
cryomodule.

Eliminate microphonics.
Reduce power.
ERLs.
Heavy Ion.
Nb3Sn/New Materials.
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Thank you for Listening.

Any Questions?
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How does it work?

∆ω12 =
−ω0∆B′t12

R/Q
4N2

∆BWn = G ′tn
N2Cc
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How does it work?

State Ration = ∆ω12
∆BWn

State Ration = ∆Bt
2Gtn

FoM =
√

SR1 × SR2

FoM =
√

(∆Bt)2

4G1G2

FoM =
∆ω12√

∆BW1∆BW2
≈

2| sin ∆θ12
2 |√

(1− |Γ1|2)(1− |Γ2|2)
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Other Reactive Tuners

Pin Diode Tuners

O. Despe, K. Johnson and T. Khoe, IEEE Trans.
Nucl. Sci., vol. 20 (3), p. 71, Jun. 1973.
D. Schulze et al., in Proc. 1972 Proton Linear
Accelerator Conference, Los Alamos, NM, USA,
October 1972, G01, pp. 156–162.

Ferrite Tuners

C. Vollinger and F. Caspers, “Ferrite-tuner
Development for 80 MHz Single-Cell RF-Cavity
Using Orthogonally Biased Garnets”, in Proc.
IPAC’15, Richmond, VA, USA, May 2015.
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Why use a ferroelectric?

No moving parts
Outside cryostat

Continuous tuning range
No need to generate a large magnetic field
Intrinsic speed < 10 ns1

Low losses/small increased bandwidth
So why hasn’t this been done before?

1S. Kazakov et al.,”Fast Ferroelectric L-band Tuner”, in Proceedings of
the 12th AAC Workshop, Lake Geneva, WI, USA, Jul. 2006, AIP
Conf.Proc. (877), pp. 331–338.
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Newly Developed Ferroelectric

Suitable material only recently developed.2

BaTiO3 - SrTiO3 solid solution (BST)
Added linear (non-tunable) Mg-based ceramic
component3

Enhanced tunability with low losses
Table: Material Properties at ≈ 800 MHz

Parameter Value

Max. εr 140
Min. εr 131.6
tan δ 9.1× 10−4
∆εr
E 0.6 kV−1cm
τ < 10 ns

2E. Nenasheva et al.,Journal of European Ceramic Society, vol. 30, pp.
395–400, Jan. 2010.

3A. Kozyrev et al., Appl.Phys. Lett., vol. 95, pp. 1–5, Jul. 2009.



A Ferroelectric
Fast Reactive

Tuner

N. Shipman

Reactive
Tuners

Ferroelectric
Material

Applications

Prototype
Tuner

Experimental
Results

Conclusion

9

Newly Developed Ferroelectric

Suitable material only recently developed.2

BaTiO3 - SrTiO3 solid solution (BST)

Added linear (non-tunable) Mg-based ceramic
component3

Enhanced tunability with low losses
Table: Material Properties at ≈ 800 MHz

Parameter Value

Max. εr 140
Min. εr 131.6
tan δ 9.1× 10−4
∆εr
E 0.6 kV−1cm
τ < 10 ns

2E. Nenasheva et al.,Journal of European Ceramic Society, vol. 30, pp.
395–400, Jan. 2010.

3A. Kozyrev et al., Appl.Phys. Lett., vol. 95, pp. 1–5, Jul. 2009.



A Ferroelectric
Fast Reactive

Tuner

N. Shipman

Reactive
Tuners

Ferroelectric
Material

Applications

Prototype
Tuner

Experimental
Results

Conclusion

9

Newly Developed Ferroelectric

Suitable material only recently developed.2

BaTiO3 - SrTiO3 solid solution (BST)
Added linear (non-tunable) Mg-based ceramic
component3

Enhanced tunability with low losses
Table: Material Properties at ≈ 800 MHz

Parameter Value

Max. εr 140
Min. εr 131.6
tan δ 9.1× 10−4
∆εr
E 0.6 kV−1cm
τ < 10 ns

2E. Nenasheva et al.,Journal of European Ceramic Society, vol. 30, pp.
395–400, Jan. 2010.

3A. Kozyrev et al., Appl.Phys. Lett., vol. 95, pp. 1–5, Jul. 2009.



A Ferroelectric
Fast Reactive

Tuner

N. Shipman

Reactive
Tuners

Ferroelectric
Material

Applications

Prototype
Tuner

Experimental
Results

Conclusion

9

Newly Developed Ferroelectric

Suitable material only recently developed.2

BaTiO3 - SrTiO3 solid solution (BST)
Added linear (non-tunable) Mg-based ceramic
component3

Enhanced tunability with low losses

Table: Material Properties at ≈ 800 MHz

Parameter Value

Max. εr 140
Min. εr 131.6
tan δ 9.1× 10−4
∆εr
E 0.6 kV−1cm
τ < 10 ns

2E. Nenasheva et al.,Journal of European Ceramic Society, vol. 30, pp.
395–400, Jan. 2010.

3A. Kozyrev et al., Appl.Phys. Lett., vol. 95, pp. 1–5, Jul. 2009.



A Ferroelectric
Fast Reactive

Tuner

N. Shipman

Reactive
Tuners

Ferroelectric
Material

Applications

Prototype
Tuner

Experimental
Results

Conclusion

9

Newly Developed Ferroelectric

Suitable material only recently developed.2

BaTiO3 - SrTiO3 solid solution (BST)
Added linear (non-tunable) Mg-based ceramic
component3

Enhanced tunability with low losses
Table: Material Properties at ≈ 800 MHz

Parameter Value

Max. εr 140
Min. εr 131.6
tan δ 9.1× 10−4
∆εr
E 0.6 kV−1cm
τ < 10 ns

2E. Nenasheva et al.,Journal of European Ceramic Society, vol. 30, pp.
395–400, Jan. 2010.

3A. Kozyrev et al., Appl.Phys. Lett., vol. 95, pp. 1–5, Jul. 2009.



A Ferroelectric
Fast Reactive

Tuner

N. Shipman

Reactive
Tuners

Ferroelectric
Material

Applications

Prototype
Tuner

Experimental
Results

Conclusion

10

Where is an FE-FRT likely to be most useful?

Low beam loading
machines

ERLs

Heavy Ion Accelerators

If repetitive mechanical
stresses must be avoided

Whenever you need
really fast tuning

Where easy
maintainability is a key
concern
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PERLE Case Study

Table: PERLE SC 5-cell Cavity Parameters

Parameter Value

ω0 801.58 MHz
Q0 2 × 1010

R/Q 393 Ω
Uc 141 J
QFPC 107

PRF 45 kW
Max. ∆fµ 40 Hz

Table: Material Properties at ≈ 800 MHz

Parameter Value

Max. εr 140
Min. εr 131.6
tan δ 9.1 × 10−4

∆εr
E 0.6 kV−1cm
σCu 5.96 × 10−7 S/m

Monte Carlo method applied to
FE-FRT Transmission Line Model

for 801.58 MHz.
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PERLE Case Study

PRF = V 2
c

4R/QQL

β + 1
β

[
1 +

(
2QL

∆ωµ

ω0

)2]

Pf vs QFPC for PERLE. Without
tuner and with tuner.

Table: FE-FRT properties for PERLE

Parameter Value

FoM 30
∆ft 80
QFPC 3× 108

PRF 3 kW
Pt 2.4 kW
Max. Pt 71 kVar

≈ 15 fold reduction in RF power
We can do even better at lower frequencies!
αd = 9.11× 10−8f√εr tan δ
tan δ ∝ f
Dielectric losses ∝ f 2
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Table: FE-FRT properties for PERLE

Parameter Value

FoM 30
∆ft 80
QFPC 3× 108

PRF 3 kW
Pt 2.4 kW
Max. Pt 71 kVar

≈ 15 fold reduction in RF power
We can do even better at lower frequencies!

αd = 9.11× 10−8f√εr tan δ
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Prototype Tuner

Prototype Tuner, 3D model and transmission line model.
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Experimental Setup
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Experimental Setup

FE-FRT mounted on cryostat. Cryostat insert.
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Demonstration of Frequency Tuning

Signal analyser measurement.

Experimental Setup.

Frequency calculated from I and Q
measurements.
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Timescale of Frequency Shift

Fall time and std(f ) vs. regression
window length.

Cavity response to
tuner < 50µs
Cavity time constant
τL = QL

ω0
≈ 46 ms

Cavity responds
faster to FE-FRT
than τL.
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Conclusion

Tested an FE-FRT with SC RF Cavity: World First!

Ferroelectric parameters are excellent, no further material
development needed.
Extremely fast << 50µs

Not limited by cavity time constant.

Eliminate microphonics, drastically reducing power
requirements for low beam loading machines.
Outside cryomodule, no moving parts → easy maintenance
and high reliability
Ease design and reduce cost of:

Power Couplers
Cryomodules
Cavities
RF power sources
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Thank You

Thank you for listening.

Any Questions?

Paper WETEB7
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