19th International Conference on RF Superconductivity SRF 19 DRESDEN

Effects of Static Magnetic Fields on a Low-frequency TEM Class Superconducting Cavity

Man-Kwan (Trista) Ng, Mike Kelly, Zack Conway, Ken Shepard Argonne National Laboratory, USA 2nd July 2019

HWR Niobium Cavity and Experimental Setup

Frequency (MHz)	337
Effective Length* (m)	0.26
$\beta = v/c$	0.29
E _{pk} /E _{acc}	4.5
B _{pk} /E _{acc} (mT/(MV/m))	9.6
$G = R_s Q(\Omega)$	97
R _{sh} /Q (W)	194

Nb: Fine grain; RRR=280

- **1. Buffered Chemical Polishing**
- 2. Bulk Electropolishing
- 3. H₂ Degassing (625C for 10 hrs)
- 4. Light Electropolishing
- 5. High Pressure Rinsing

Effective Length = $\beta\lambda$

HWR Niobium Cavity and Experimental Setup

Experimental Setup

Q Curves

Initial ambient magnetic field inside the test cryostat with magnetic shield: $18 \pm 1 \text{ mG}$ Improved ambient magnetic field with active cancellation: $5 \pm 1 \text{mG}$

Flux Change Cooling Through Tc

Surface Resistance

Summary

- We see very little Meissner effect: flux trapping in our TEM cavity differs from some TM and TEM cavities
- The magnetic field dependence of the surface resistance is 0.17-0.19 n Ω /mG at both 1.6 K and 4.5 K.
- We see no thermocurrent (<5 mG induced field) in our SS-Nb cavity. We plan to measure this at a higher resolution.
- At our best achieved 5mG level, trapped flux may not be a dominant factor affecting the performance (Q) of our HWR cavity.

