

New Insights into RF Field Amplitude and Frequency Dependence of Vortex Surface Resistance

Mattia Checchin 19th International Conference on RF Superconductivity 02 Jul 2019

Why do vortices dissipate under RF driving?

- Vortices oscillate driven by the RF current
- Random pinning centers in the material defines a "pinning landscape" against which the vortex moves
- Part of the EM energy in the resonator is converted into vortex motion
 - Power is dissipated by the vortex
 www we can define a vortex surface resistance R_{fl}

Why do vortices dissipate under RF driving?

- Vortices oscillate driven by the RF current
- Random pinning centers in the

$$R_s(T, B_t) = R_{BCS}(T) + R_{fl}(B_t)$$

- Part of the EM energy in the resonator is converted into vortex motion
 - Power is dissipated by the vortex www we can define a vortex surface resistance R_{fl}

CENTE

🚰 Fermilab

n

6

n

Low RF field sensitivity

• Trapped flux sensitivity:

$$S = \frac{R_{fl}}{B_t}$$

• Non-monotonic trend of *S* as a function of mean-free-path M. Martinello et al., Appl. Phys. Lett. 109, 062601 (2016)

M. Martinello et al., Appl. Phys. Lett. 109, 062601 (2016) D. Gonnella et al., J. Appl. Phys. 119, 073904 (2016)

 Vortex surface resistance is well understood at low RF amplitudes

M. Checchin et al., Supercond. Sci. Technol. 30, 034003 (2017) A. Gurevich and G. Ciovati, Phys. Rev. B 87, 054502 (2013) And many others....

- Two different regimes:
 - **Pinning regime**: S increases if $l \uparrow$ and $\omega^2 \uparrow$
 - **Flux-flow regime**: S decreases if $l \uparrow$, but independent on ω

Medium RF field sensitivity

- S has almost linear RF field dependence up to ~ 70 mT
 M. Martinello et al., Appl. Phys. Lett. 109, 062601 (2016)
 C. Benvenuti et al., Physica C 316, 153 (1999)
 D. Hall et al., IPAC 2017 (Nb₃Sn)
- Linear behavior of S vs B_p can be explained as the occurrence of a non-linear pinning force (s. Calatroni and R. Vaglio, Phys. Rev. Accel. Beams 22, 022001 (2019)), Or as generated by hysteretic losses in the framework of a mean field description of pinning (D. Liarte et al., Phys. Rev. Applied 10, 054057 (2018))

Medium RF field sensitivity

2.2

Bulk Nb, 1.3 GHz

Sensitivity at high RF field

- S strongly deviates from linearity at high RF field!
- Trapped flux sensitivity of 120 C baking and Ninfusion as high as Ndoped cavities at high fields!

Sensitivity at high RF field

- S strongly deviates from linearity at high RF field!
- Trapped flux sensitivity of 120 C baking and Ninfusion as high as Ndoped cavities at high fields!
- Q₀ is highly affected at high field when field is trapped during the cooldown

Sensitivity at high RF field

 S strongly deviates from linearity at high RF field!

120 C baked, 1.3 GHz

Understanding the field dependence of S is of upmost importance for high-Q/high-gradient applications
 ◇ Very important for high gradient accelerators such as the ILC
 at high field when field

 10^{11}

is trapped during the cooldown

45

Detailed study of high gradient sensitivity for 120 C baking

Detailed study of sensitivity at high RF amplitude

- Set-up for sensitivity study:
 - High gradient cavity with ILC recipe ($E_{max} = 48 MV/m$)
 - Helmholtz coils
 - 3 FGs at equator
 - RTDs at irises and equator
 - Temperature mapping (Tmap)
- Objective:
 - Gather new insights on trapped flux sensitivity at high RF field level
 - Study the dissipation pattern due to trapped vortices with Tmap

Vortex surface resistance at high RF amplitudes

Vortex surface resistance at high RF amplitudes

Vortex surface resistance at high RF amplitudes

Trapped-flux frequency shift

- Deviations from Lorentz force detuning observed when the cavity is field-cooled (FC)
- Δf_{fl} frequency shift due to trapped vortices

 $\Delta f_{fl} = \Delta f_{FC} - \Delta f_{ZFC}$

- Depends on surface peak magnetic field B_p

- Depends on trapped field B_t

Mattia Checchin | 19th International Conferen

Trapped-flux frequency shift

 Deviations from Lorentz force detuning observed when the cavity is field-cooled (FC)

Trapped-flux frequency shift Δf_{fl} : \Rightarrow Signature of flux trapped in the resonator $\Rightarrow |\Delta f_{fl}|$ increases as a function of B_p

0

- f₀ (kHz)

ZFC B. = 100 mG

 $B_t = 50 \text{ mG}$ $B_t = 30 \text{ mG}$

- Depends on surface peak magnetic field B_p
- Depends on trapped field B_t

- $f_0 (kHz)$

1300

1700

 E_{acc}^{2} (MV²/m²)

2100

2400

Numerical simulations of vortex dynamics and surface resistance

Single-vortex dynamics simulation

Neglecting the inertial term $(m_v \approx 0)$:

Single-vortex dynamics simulation

Neglecting the inertial term $(m_v \approx 0)$:

$$\begin{cases} \eta_0 \dot{u}(t,z) = \epsilon u''(t,z) + f_p(u(t,z)) + f_L(t,z) \\ u(0,z) = 0 \\ u'(t,0) = 0 \\ u'(t,Z_{max}) = 0 \end{cases}$$
Example of convergence to steady-state solution

Equation solved with method of lines until steady-state, then the surface resistance is calculated as:

$$R_{fl} = \frac{2B_t \mu_0 f}{\lambda B_p} \int_0^{1/f} \cos \omega t \int_0^\infty \dot{u} \, e^{-z/\lambda} \, dz \, dz$$

Pinning landscape from building block potential

- Pinning landscape defined as the sum of many pinning potentials
- Every pinning potential is a modified Lorentzian function
 - -a is the anisotropy parameter
 - U_i potential depth
 - X_i and Z_i pinning center coordinates

🚰 Fermilab

$$U_{p}(u,z) = -\sum_{i} \frac{(2\xi)^{2}U_{i}}{(2\xi)^{2} + (u - X_{i})^{2} + a(z - Z_{i})^{2}} \qquad f_{p}(u,z) = -\frac{\partial U_{p}(u,z)}{\partial x}$$

$$\int_{\text{PISTRIBUTION}} f_{p}(u,z) = -\frac{\partial U_{p}(u,z)}{\partial x}$$

Example of simulated sensitivity

RF depinning

Interpretation of experimental data at 1.3 GHz

Comparison with experimental data at 1.3 GHz

- At low field, oscillations within a non linear pinning potential
- Slope change due to RF depinning
- Corrected experimental data show possible saturation at high RF fields
 - The vortex is totally depinned

Frequency shift interpretation

- Vortex oscillation generates induced currents in the SC¹
 - Effective penetration depth of the RF current increases
 - \rightarrow lower cavity frequency
 - $\begin{array}{l} \ \lambda_{fl} \ \text{defines the vortex} \\ \text{contribution to the current profile} \\ \text{reach in the material} \end{array}$
- We observe Δf_{fl} dependent on B_p!
 The freq. shift is not constant
- $\Delta \lambda_{fl}$, penetration depth variation due to vortex oscillation

$$\Delta \lambda_{fl} = -\frac{g\Delta f_{fl}}{\mu_0 \pi {f_0}^2}$$

¹ M. W. Coffey and J. R. Clem, Phys. Rev. Lett. 67, 386 (1991)

Not in scale

Penetration depth variation due to RF depinning

Higher $B_p \rightarrow \text{RF}$ depinning \rightarrow deeper induced currents \rightarrow larger $\Delta \lambda_{fl}$

Penetration depth variation due to RF depinning

Higher $B_t \rightarrow$ larger vortex contribution to $\lambda_{eff} \rightarrow$ larger $\Delta \lambda_{fl}$

Summary

- Vortex dynamics in SRF cavities at high RF fields seems to be dictated by the pinning condition
 - RF depinning can explain both R_{fl} and $\Delta \lambda_{fl}$ field dependence
 - At high field, possible saturation of R_{fl}

-----> consistent with numerical simulations

Dependence on thermal treatment and frequency

Dependence on treatment and frequency

- Measurements were done for 120 C baked and N-doped cavities operating at 1.3 GHz, 2.6 GHz and 3.9 GHz
- Qualitatively the trend is similar in all cases
 Almost linear trend till moderate fields
 Steeper dependence at higher fields

🚰 Fermilab

Dependence on treatment and frequency

- Measurements were done for 120 C baked and N-doped cavities operating at 1.3 GHz, 2.6 GHz and 3.9 GHz
- Qualitatively the trend is similar in all cases
 Almost linear trend till moderate fields
 Steeper dependence at higher fields

🚰 Fermilab

Dependence on treatment and frequency

Measurements were done for 120 C baked and N-doped For higher frequencies and N-doping the onset appears at lower fields: Vortex physics may be masked by thermal effects ($R_{BCS} \propto f^2$ and lower bulk RRR) 70 60 **RF** depinning may depend on frequency \bigcirc Higher f and low mean-free-path might trigger Larkin-Ovchinnikov instability 10 0 0 20 40 60 80 100 120 140 160 180 200 220 0 20 40 60 80 100 120 140 160 180 200 220 0 20 40 60 80 100 120 140 160 180 200 220 $B_{n}(mT)$ $B_n(mT)$ $B_{p}(mT)$

Concluding...

Conclusions

- High-gradient sensitivity can be very large also for treatments showing low *S* at low RF fields
- Numerical simulations suggest that the field dependence of *S* is determined by the pinning condition
 - ~ linear dependence due to oscillations within pinning potential
 - Non-linear field dependence due to RF depinning
 - Agreement with frequency shift variation with RF field
 - Saturation to constant value at high fields
 - Possibly observed after subtraction of thermal contributions
- High frequency and N-doped cavities show lower onset of non-linear field dependence
 - Larger thermal contribution? RF depinning dependent on frequency? LO instability?

🗲 Fermilab

Many thanks to the whole Fermilab's SRF team for the support and stimulating discussions Many thanks to the whole Fermilab's SRF team for the support and stimulating discussions

and...

Thank you for your attention!