

Nb₃Sn at Fermilab: Exploring Performance

Sam Posen 19th International Conference on RF Superconductivity July 4, 2019

1. Progress in Nb₃Sn Film Quality

- 2. Defects to Avoid in Nb_3Sn
- 3. Progress in Demonstrating Practicality of Nb₃Sn Cavities

Progress in Nb₃Sn Film Quality

 At TTC 2019 in Vancouver, we showed that we had made a Nb₃Sn cavity that reached 22.5 MV/m, a new record CW accelerating gradient for Nb₃Sn (25% increase)

Still trying to nail down which of changes we made to the coating parameters were the important ones

Since TTC, we have repeated the coating as closely as we could and found there are some major differences in film properties...

Matte vs Shiny Nb₃Sn Surface

Left: Previous Nb₃Sn Coating Parameters

SRF'19 Sam Posen

Right: New Nb₃Sn Coating Parameters result in mirror like coating

Previous coatingparameters: mattesurface

Film Thickness via FIB Liftout

3.5

Summary of Observations

- Shiny appearance consistent with reduced surface roughness
- Newer films also have smaller grains and are thinner
- Some possible reasons for reaching higher maximum fields:
 - Thinner films Nb₃Sn has poor thermal conductivity, possibly reduce overheating
 - Smaller surface roughness less magnetic field enhancement

 Maximum fields higher than 18 MV/m – now observed in a second cavity! More details in section 3...

 Progress in Nb₃Sn Film Quality
Defects to Avoid in Nb₃Sn
Progress in Demonstrating Practicality of Nb₃Sn Cavities

Defects to Avoid in Nb₃Sn – Thin Regions

 Thin regions identified as cause of Q degradation in early Cornell cavity via microscopy of T-map hot spot cutouts [Y. Trenikhina et al. SuST 2018]

OPEN ACCESS	
IOP Publishing	Superconductor Science
Supercond. Sci. Technol. 31 (2018) 015004 (13pp)	https://doi.org/10.1088/13

Performance-defining properties of Nb₃Sn coating in SRF cavities

Y Trenikhina¹, S Posen¹ , A Romanenko¹, M Sardela², J-M Zuo² , D L Hall³ and M Liepe³

10¹⁰

SRF'19

11

Defects to Avoid in Nb₃Sn – Thin Regions

- TEM studies in collaboration with Northwestern show frequent orientation relationship in thin regions [J.-Y. Lee et al. SuST 2019; SRF'19 MP009]
- 9-cell sample host cavity study shows thin regions tend to form when tin flux is low [T. Spina et al. SRF'19 MOP059; manuscript in preparation]
- <u>Avoidable defect</u>: not typically observed in coatings with good performance

OPEN A	ACCESS			
IOP Publ	IOP Publishing			
Supercond	Sci	Technol	32 (2010)	

024001 (16pp

Superconductor Science and Technology https://doi.org/10.1088/1361-6668/aaf268

Atomic-scale analyses of Nb₃Sn on Nb prepared by vapor diffusion for superconducting radiofrequency cavity applications: a correlative study

Jaeyel Lee^{1,2,6}, Sam Posen^{2,6}, Zugang Mao¹, Yulia Trenikhina², Kai He^{1,3}, Daniel L Hall⁴, Matthias Liepe⁴ and David N Seidman^{1,5,6}

Defects to Avoid in Nb₃Sn – Tin Segregation in GBs

- Witness samples coated with cavities with Q-slope analyzed by TEM and APT show tin segregation in grain boundaries with size ~ξ
- <u>Avoidable defect</u>: clean GBs observed in samples from cavities with strong performance
- [J.-Y. Lee et al. SRF'19 MP008; arXiv:1907.00476], studies of impact on superconductivity in progress as part of CBB

Atom probe tomography (APT) tip preparation and analysis

Poor performance coating showing tin segregation at GB

High performance coating showing minor Sn depletion

Microscopy by J.-Y. Lee, Northwestern U./Fermilab

 Progress in Nb₃Sn Film Quality
Defects to Avoid in Nb₃Sn
Progress in Demonstrating Practicality of Nb₃Sn Cavities

Can We Successfully Coat at Frequencies <1 GHz?

New Nb₃Sn coating parameters: shiny surface

650 MHz cavity B9AS-AES-002

Can We Successfully Coat at Frequencies <1 GHz?

16 SRF'19 Sam Posen

Can We Successfully Coat at Frequencies <1 GHz?

Can We Process Multipacting on Nb₃Sn Surfaces?

 Can we reduce SEY sufficiently on Nb₃Sn surfaces? We have seen baking degrade performance. And quenching causes trapped flux. Can we process without baking or quenching?

Can We Process Multipacting on Nb₃Sn Surfaces?

🗲 Fermilab

650 MHz cavity B9AS-AES-002

19

SRF'

m Posen

Can We Tune a Cold Nb₃Sn Cavity?

- Nb₃Sn is a strain sensitive superconductor
 - E.g. Nb₃Sn wires must be pre-stressed so that they are closer to neutral loading at max field
- We strain our cavities in operation! What is the effect of frequency tuning?
- How does this affect our cavities? Residual resistance? BCS resistance? Max field?

Figure 11. Strain sensitivity of the critical current for different A15 superconductors with varying amounts of disorder, after Flükiger *et al* [26] (©1984 Plenum Press. Adapted with kind permission of Springer Science and Business Media and R Flükiger).

A Godeke 2006 Supercond. Sci. Technol. 19 R68

Can We Tune a Cold Nb₃Sn Cavity?

21 SRF'19 Sam Posen

Special thanks to Y. Pischalnikov and J.-C. Yun

Expected Maximum Surface Strain

Can We Tune a Cold Nb₃Sn Cavity?

Can We Successfully Coat an Accelerator-Style Structure?

- Showing a strong performance in our most widely applied structure would be a fantastic milestone
- We decided to coat a real 9-cell ILC cavity, including all its features that are tricky for coating (e.g. HOM cans and Fhooks, NbTi flanges and conical end-dishes)

Preparation: Nb₃Sn 9-Cell Sample Host Cavity

Fermilab - 1.3 GHz 9-cell, 17 samples located at equators and irises

(no useful cavities were harmed in the making of this study... cavity that was cut had very bad weld defect)

9-cell Cavity TB9ACC014 After Coating

Can We Successfully Coat an Accelerator-Style Structure?

Excellent performance in a practical accelerator structure – record accelerating voltage ~10 MV in Nb₃Sn cavity

ermilab

Time for Compact SRF Accelerators via Nb₃Sn!

- With the significant progress in Nb₃Sn, it is time to seriously think about a new class of CW compact high power industrial-class SRF accelerators enabled by watt-scale dissipation at T > 4 K with Nb₃Sn (cryocoolers!)
- Many applications to explore (wastewater, isotopes, hospitals, compact light source...)
- Fermilab/IARC ~10 MeV accelerator with conduction cooling in active development

۵.

Summary

- New Nb₃Sn film development: lower surface roughness, thinner films
- Experiments help us understand defects to avoid in Nb₃Sn
- Excellent progress in demonstrating practicality of Nb₃Sn cavities
 - We showed that we can coat at 650 MHz and achieve $Q_0 > 10^{10}$ at 20 MV/m at 4.4 K
 - We showed that we can process multipacting if needed
 - We showed that we can tune a cold cavity without degradation
 - We showed that we can coat an accelerator-style structure and achieve the kind of performance needed for compact accelerator applications

Acknowledgements

- Dedicated efforts of Brad Tennis
- SRF processing team at FNAL and ANL, FNAL VTS testing team, FNAL machine shop and welding experts
- FNAL resonance control team for tuner setup
- Division & lab management for strong support and creating an environment where this type of R&D can thrive
- Fruitful collaboration with D.N. Seidman and J.-Y. Lee at Northwestern University
- Pioneers in Nb₃Sn SRF coatings (including Siemens, Wuppertal, KfK)
- Helpful discussions with Alex Romanenko, Anna Grassellino, Sergey Belomestnykh, Hasan Padamsee, Curtis Crawford, Matthias Liepe, Grigory Eremeev, Daniel Hall, Ryan Porter, Uttar Pudasaini, and the FNAL SRF science team
- Support from US DOE Office of High Energy Physics with partial support from ERDC

