



## Field Limitation in Nb<sub>3</sub>Sn Cavities

Ryan Porter Cornell University

Supported by: U.S. DOE award DE-SC0008431: 1.3 GHz coatings + tests NSF Award 1734189: 2.6 GHz + 3.9 GHz coatings + tests Center for Bright Beams , NSF Award PHY-1549132: material studies

This works make use of Cornell Center for Materials Research, NSF MRSEC program (DMR-1719875)









- Introduce Nb<sub>3</sub>Sn
- Standard Nb<sub>3</sub>Sn cavity performance
- Experimental data
- Quench models
- Reducing roughness
- Conclusion



# Higher critical temperature → Operation at 4.2 K Higher superheating field → Double the limit of niobium

| Parameter                      | Niobium | Nb <sub>3</sub> Sn |
|--------------------------------|---------|--------------------|
| Transition temperature         | 9.2 K   | 18 K 🗲             |
| Superheating field             | 219 mT  | 425 mT 🗲           |
| Energy gap $\Delta/k_{b}T_{c}$ | 1.8     | 2.2                |
| λ at T = 0 K                   | 50 nm   | 111 nm             |
| ξ at T = 0 K                   | 22 nm   | 4.2 nm             |
| GL parameter κ                 | 2.3     | 26                 |



Blue: tin Red: niobium 1. Lower losses 2. Higher gradients ~90 MV/m



#### Properties of Nb<sub>3</sub>Sn

# Higher critical temperature → Operation at 4.2 K Higher superheating field → Double the limit of niobium

| Parameter                      | Niobium | Nb <sub>3</sub> Sn |
|--------------------------------|---------|--------------------|
| Transition temperature         | 9.2 K   | 18 K 🗲             |
| Superheating field             | 219 mT  | 425 mT 🗲           |
| Energy gap $\Delta/k_{b}T_{c}$ | 1.8     | 2.2                |
| λ at T = 0 K                   | 50 nm   | 111 nm             |
| ξ at T = 0 K                   | 22 nm   | 4.2 nm             |
| GL parameter κ                 | 2.3     | 26                 |





#### Cornell Nb<sub>3</sub>Sn Vapor Diffusion Furnace



S. Posen and M. Liepe, Phys. Rev. ST Accel. Beams 15, 112001 (2014).



#### Nb<sub>3</sub>Sn Coatings

Nb<sub>3</sub>Sn forms a polycrystalline layer on the surface of the niobium











#### **Comparison to Niobium**









10

Accelerating gradient (MV/m)

12

14

16

18

8

#### Q vs E for Different Frequencies of Nb<sub>3</sub>Sn Cavity

10<sup>10</sup>

10<sup>9</sup> 0

2

4

6

20



#### Cryo-Efficiency





#### Current performance





#### Nb<sub>3</sub>Sn cavities consistently quench at fields between 14 and 18 MV/m in CW operation

The superheating field suggests we can achieve fields up to **96 MV/m**!





#### Nb<sub>3</sub>Sn cavities consistently quench at fields between 14 and 18 MV/m in CW operation









## What is limiting the quench field?





# **Experimental data**

#### Pulsed quench field





#### T-Map experiment

#### Use temperature map to look for quench mechanism/site:

Niobium surface









#### Localised quench

#### Nb<sub>3</sub>Sn cavities are limited by a quench at a localized spot



#### What could be at fault?

Ryan Porter SRF 2019



#### Localised quench

#### Nb<sub>3</sub>Sn cavities are limited by a quench at a localized spot



#### What could be at fault?

Ryan Porter SRF 2019



#### Localised quench

#### Nb<sub>3</sub>Sn cavities are limited by a quench at a localized spot



#### What could be at fault?

Ryan Porter SRF 2019



• Measure temperature of sensor near the quench point as field is increased





#### Near quench behaviour





#### Near quench behaviour





- Cut out this region and examined with microscopy
- Nothing obvious except Nb grain boundary cliff
  - Rough Surface





- Nb<sub>3</sub>Sn we create is rougher than EP Nb  $-\!\sim\!\!1\,\mu m$  peak to peak
- This causes large enhancement of the surface magnetic field





- 1 % surface > 50% magnetic field enhancement
- Lowers defect "activation" field

17 MV/m x 1.50 field enhancement -> 25 MV/m

 Reducing surface
 roughness (growth, posttreatment) could increase
 quench field









- Quench 4.2 K vs 2 K
  - Quench fields within  $\sim 1\%$  ( $\sim 3.4\%$  error bar)
- No temperature dependence of quench field!
  - Limits possible quench mechanisms





- Quench 4.2 K vs 2 K
  - Quench fields within  $\sim 1\%$  ( $\sim 3.4\%$  error bar)
- No temperature dependence of quench field!
  - Limits possible quench mechanisms

## Conclusion:

## Quench Mechanism Temperature Independent





Could Sn depleted regions cause quench?
 – Quench field change with temperature <u>too small</u>





# The 2.6 GHz Nb<sub>3</sub>Sn cavities' quench field is consistent with 1.3 GHz Nb<sub>3</sub>Sn cavities.

Results show quench defect does not depend on frequency!

-> Limits possible defects that cause quench





# The 2.6 GHz Nb<sub>3</sub>Sn cavities' quench field is consistent with 1.3 GHz Nb<sub>3</sub>Sn cavities.





- Narrow range of quench fields
- Quench localized
- Quench site warms just before quench + quantized – Vortex entry
- High surface roughness -> Can decrease quench field
- No temperature dependence
- No frequency dependence





# Models of Quench



#### Grain boundary flux penetration



26/35

2λ



## <u>Ginzburg-Landau Simulation of Vortex</u> <u>Nucleation In Grain Boundaries</u>

- Center for Bright Beams (CBB): <u>A. R. Pack, M. Transtrum (BYU)</u>: MOP017
- Poor grain boundary geometry -> lower flux entry field



20.0





## Ginzburg-Landau Simulation of Vortex Nucleation In Grain Boundaries

- Center for Bright Beams (CBB): <u>A. R. Pack, M. Transtrum (BYU)</u>: MOP017
- Poor grain boundary geometry -> lower flux entry field





#### A. R. Pack, M. Transtrum (BYU):





#### A. R. Pack, M. Transtrum (BYU):







# **Reducing Surface Roughness**



- Developing surface treatments to reduce surface roughness
- Early result: Oxypolishing halves roughness and surface field enhancement with 800 nm removal





- Nb<sub>3</sub>Sn roughness comes from growth
  - Bad Sn nucleation -> rough surface
  - Good Sn nucleation -> smooth surface



#### Nb<sub>3</sub>Sn Growth:











200 nm



#### Zeming Sun (Cornell):

- Electroplate Sn onto Nb before heat treatment
  - > Grow smoother Nb<sub>3</sub>Sn





#### Sn Electroplating

#### Coated Sn







 $Nb_3Sn$ 







#### **Sn Electroplating**

#### $Sn_2Cl$ Nucleation $\underline{R_a \sim 300 \text{ nm}}$



### "Sn Plating Nucleation" <u>R<sub>a</sub> ~ 60 nm</u>



#### Next step: Grow entire cavity using Sn plating



#### Next step: Grow entire cavity using Sn plating



- From experiment:
  - Claim: Vortex entry at grain boundaries a likely quench mechanism
- Reducing surface roughness is a critical next step

• Can grow smoother Nb<sub>3</sub>Sn with Sn plating



#### Acknowledgements

The Cornell Nb<sub>3</sub>Sn program is supported by: U.S. DOE award DE-SC0008431: 1.3 GHz Nb3Sn tests and Nb3Sn R&D NSF Award 1734189: 2.6 GHz and 3.9 GHz tests and R&D Center for Bright Beam (NSF Award 1549132): Materials studies

This works make use of Cornell Center for Materials Research, NSF MRSEC program (DMR-1719875)

#### with special thanks to

Prof. Matthias Liepe Prof. Tomas Arias Prof. David A. Muller

Prof. James P. Sethna

Prof. Mark Transtrum

Dr. Danilo Liarte

*Center for* 

Dr. Zeming Sun Dr. Daniel Hall Paul Cueva Nathan Sitaraman James Maniscalco

Alden Pack

James Sears Greg Kulina John Kaufman Holly Conklin Terri Gruber Paul Bishop





