Evaluation of the SC characteristics of multi-layer thin-film structures of NbN and SiO₂ on pure Nb substrate

Ryo.Katayama,

T. Saeki, T.kubo, H.Hayano (KEK, Ibaraki), R.Ito, T. Nagata (ULVAC inc., chiba) , Y. Iwashita, H. Tongu (ICR,Kyoto U. Uji,Kyoto), C. Antoine (CEA/IRFU, Gif-sur-Yvette),

H.Ito (Sokendai, Ibaraki)

Introduction

- The maximum accelerating gradient of superconducting cavity is limited by the magnetic field at which vortex avalanche occurs.
 - In this study, we calls such magnetic field as "effective H_{c1}", H_{c1,eff}.
- Recently proposed theory predicts that H_{c1,eff} is pushed up by Superconductor-Insulator-Superconductor structure (S-I-S structure)[1][2][3][4].
- S-layer I-layer S-layer (Bulk Nb)

 $H=H_0$ Sin ωt

• In order to verify this scheme, we are trying to make some experiments.

[1] A. Gurevich, Appl. Phys. Lett. 88, 012511 (2006).
[2] T. Kubo, Y. Iwashita, and T. Saeki, Appl. Phys. Lett. 104, 032603 (2014).
[3] A. Gurevich, AIP Adv. 5, 017112 (2015).
[4] T. Kubo, Supercond. Sci. Technol. 30, 023001 (2017).

- The proposed theory predicts an optimum set of the parameters to exhibit a good performances
 - We focused on NbN-Insulator-Nb structure.
 - Theoretical calculation of effective H_{c1} at 0 K is plotted below.
 - Note that Hc1 of pure bulk Nb is assumed to be 180 mT at 0 K in this calculation.

(T. Kubo, Y. Iwashita, and T. Saeki, Appl. Phys. Lett. 104, 032603 (2014).).

2

- The proposed theory predicts an optimum set of the parameters to exhibit a good performances
 - We focused on NbN-Insulator-Nb structure.
 - Theoretical calculation of effective H_{c1} at 0 K is plotted below.
 - Note that Hc1 of pure bulk Nb is assumed to be 180 mT at 0 K in this calculation.

(T. Kubo, Y. Iwashita, and T. Saeki, Appl. Phys. Lett. 104, 032603 (2014).).

2

- The proposed theory predicts an optimum set of the parameters to exhibit a good performances
 - We focused on NbN-Insulator-Nb structure.
 - Theoretical calculation of effective H_{c1} at 0 K is plotted below.
 - Note that Hc1 of pure bulk Nb is assumed to be 180 mT at 0 K in this calculation.

- In order to evaluate this scheme, we scanned parameter regions (red line).
 - NbN thickness: 50 800 nm
 - SiO_2 thickness is fixed to 30 nm.
- In this study, in order to determine effective Hc1, the third harmonic voltage method is used (explained in the following).

2

(T. Kubo, Y. Iwashita, and T. Saeki, Appl. Phys. Lett. 104, 032603 (2014).).

- The proposed theory predicts an optimum set of the parameters to exhibit a good performances
 - We focused on NbN-Insulator-Nb structure.
 - Theoretical calculation of effective H_{c1} at 0 K is plotted below.
 - Note that Hc1 of pure bulk Nb is assumed to be 180 mT at 0 K in this calculation.

- In order to evaluate this scheme, we scanned parameter regions (red line).
 - NbN thickness: 50 800 nm
 - SiO_2 thickness is fixed to 30 nm.
- In this study, in order to determine effective Hc1, the third harmonic voltage method is used (explained in the following).

2

(T. Kubo, Y. Iwashita, and T. Saeki, Appl. Phys. Lett. 104, 032603 (2014).).

S-I-S' sample used in this study

- NbN/SiO₂ thin-film with various thicknesses is formed on pure bulk Nb [5].
- This sample is fabricated by ULVAC, Inc. with **DC magnetron sputtering**.

[5] R. Ito, T. Nagata, et al., LINAC 2018 Proceedings, TUPO050

Independent measurement and analysis

Setup of the third harmonic measurement

Cryostat

- **S-I-S sample** is installed in **Cryostat**.
- Liquid Helium keep the temperature of S-I-S sample at the cryogenic temperature.
- Coil set just above S-I-S sample, which can apply an AC magnetic field $H_{ac}cos(\omega t)$.
- Temperature of S-I-S sample is monitored by **Temperature sensor**, and gradually increased by **Heater**.
- Coil voltage and current are detected and digitized by V-A meters installed outside.

We can control the temperature and the magnetic field

Temperature

- H_{c1} satisfies the following empirical curve:
 - $H_{c1}(T) = H_{c1}(0) \times (1 (T/T_c)^2)$
 - T_c is the critical temperature
- Third harmonic measurement:
 - AC magnetic field $H_{ac}cos(\omega t)$ is applied to a S-I-S sample by the coil.
 - In general, the third harmonic voltage induced in the coil, V_{3rd} , rises at the moment $H_{ac} > H_{c1}(T)$.
 - By changing the temperature and detecting the rise of V_{3rd} signal, we can determine H_{c1} at a certain temperature.
- By repeating measurements for different H_{ac} , we can clarify the temperature dependence of H_{c1} .

- H_{c1} satisfies the following empirical curve:
 - $H_{c1}(T) = H_{c1}(0) \times (1 (T/T_c)^2)$
 - T_c is the critical temperature
- Third harmonic measurement:
 - AC magnetic field $H_{ac}cos(\omega t)$ is applied to a S-I-S sample by the coil.
 - In general, the third harmonic voltage induced in the coil, V_{3rd} , rises at the moment $H_{ac} > H_{c1}(T)$.
 - By changing the temperature and detecting the rise of V_{3rd} signal, we can determine H_{c1} at a certain temperature.
- By repeating measurements for different H_{ac} , we can clarify the temperature dependence of H_{c1} .

- H_{c1} satisfies the following empirical curve:
 - $H_{c1}(T) = H_{c1}(0) \times (1 (T/T_c)^2)$
 - T_c is the critical temperature
- Third harmonic measurement:
 - AC magnetic field $H_{ac}cos(\omega t)$ is applied to a S-I-S sample by the coil.
 - In general, the third harmonic voltage induced in the coil, V_{3rd} , rises at the moment $H_{ac} > H_{c1}(T)$.
 - By changing the temperature and detecting the rise of V_{3rd} signal, we can determine H_{c1} at a certain temperature.
- By repeating measurements for different H_{ac} , we can clarify the temperature dependence of H_{c1} .

Temperature

- H_{c1} satisfies the following empirical curve:
 - $H_{c1}(T) = H_{c1}(0) \times (1 (T/T_c)^2)$
 - T_c is the critical temperature
- Third harmonic measurement:
 - AC magnetic field $H_{ac}cos(\omega t)$ is applied to a S-I-S sample by the coil.
 - In general, the third harmonic voltage induced in the coil, V_{3rd} , rises at the moment $H_{ac} > H_{c1}(T)$.
 - By changing the temperature and detecting the rise of V_{3rd} signal, we can determine H_{c1} at a certain temperature.
- By repeating measurements for different H_{ac} , we can clarify the temperature dependence of H_{c1} .

Temperature

- H_{c1} satisfies the following empirical curve:
 - $H_{c1}(T) = H_{c1}(0) \times (1 (T/T_c)^2)$
 - T_c is the critical temperature
- Third harmonic measurement:
 - AC magnetic field $H_{ac}cos(\omega t)$ is applied to a S-I-S sample by the coil.
 - In general, the third harmonic voltage induced in the coil, V_{3rd} , rises at the moment $H_{ac} > H_{c1}(T)$.
 - By changing the temperature and detecting the rise of V_{3rd} signal, we can determine H_{c1} at a certain temperature.
- By repeating measurements for different H_{ac} , we can clarify the temperature dependence of H_{c1} .

Temperature

- H_{c1} satisfies the following empirical curve:
 - $H_{c1}(T) = H_{c1}(0) \times (1 (T/T_c)^2)$
 - T_c is the critical temperature
- Third harmonic measurement:
 - AC magnetic field $H_{ac}cos(\omega t)$ is applied to a S-I-S sample by the coil.
 - In general, the third harmonic voltage induced in the coil, V_{3rd} , rises at the moment $H_{ac} > H_{c1}(T)$.
 - By changing the temperature and detecting the rise of V_{3rd} signal, we can determine H_{c1} at a certain temperature.
- By repeating measurements for different H_{ac} , we can clarify the temperature dependence of H_{c1} .

The measurement result of the effective Hc1

• Theoretical calculation (H_{c1,eff} vs NbN thickness) is plotted below:

- Optimum thickness exists, which is the same as experiment.
- London penetration depth λ of NbN film is calculated by the electrical resistivity ρ and the critical temperature T_c.
- H_c of NbN is taken from literature (C Geibel et.al, (1985) J. Phys. F: Met. Phys. 15 405).

• Theoretical calculation (H_{c1,eff} vs NbN thickness) is plotted below:

- Optimum thickness exists, which is the same as experiment.
- London penetration depth λ of NbN film is calculated by the electrical resistivity ρ and the critical temperature T_c .
- H_c of NbN is taken from literature (C Geibel et.al, (1985) J. Phys. F: Met. Phys. 15 405).

• Theoretical calculation (H_{c1,eff} vs NbN thickness) is plotted below:

- Optimum thickness exists, which is the same as experiment.
- London penetration depth λ of NbN film is calculated by the electrical resistivity ρ and the critical temperature T_c.
- H_c of NbN is taken from literature (C Geibel et.al, (1985) J. Phys. F: Met. Phys. 15 405).

9

• Theoretical calculation (H_{c1,eff} vs NbN thickness) is plotted below:

- Optimum thickness exists, which is the same as experiment.
- London penetration depth λ of NbN film is calculated by the electrical resistivity ρ and the critical temperature T_c.
- H_c of NbN is taken from literature (C Geibel et.al, (1985) J. Phys. F: Met. Phys. 15 405).

9

- The performance of NbN film deteriorates due to the effect of the imperfect surfaces such as surface defects and roughness and so on.
- This effect is included as the parameter η [6][7].

 $\eta = 1$ (Black line) is the ideal case, while $\eta < 1$ (other colors) is not so.

[6] A. Gurevich and T. Kubo, Physical Review
B 96, 184515 (2017)
[7] T. Kubo, Progress of Theoretical and
Experimental Physics 2015, 063G01 (2015)

NbN Film Thickness [nm]

- The performance of NbN film deteriorates due to the effect of the imperfect surfaces such as surface defects and roughness and so on.
- This effect is included as the parameter η [6][7].

 $\eta = 1$ (Black line) is the ideal case, while $\eta < 1$ (other colors) is not so.

Comparison of data and theory

• Experimental result and theoretical curve are superimposed below.

Quite similar result is also experimentally obtained by an independent measurement at KEK.

Please refer 11 TUPO78

Comparison of data and theory

• Experimental result and theoretical curve are superimposed below.

Quite similar result is also experimentally obtained by an independent measurement at KEK.

Please refer 11 TUPO78

Future Prospect

 An apparatus that can deposit Nb or NbN thin-film on Cu or Nb cavity is being prepared in collaboration with ULVAC, Inc..

We have already successfully ¹² deposited Nb thin-film on the inner wall of Cu tube (Φ35mm).

Conclusion

- We measured the effective Hc1 of NbN/SiO2/Nb multi-layer sample by using the third harmonic measurement at Kyoto University.
- NbN thicknesses is 50, 100, 150, 200, 250, 300, 400, 800 nm and SiO2 thickness is 30 nm, being created on pure bulk Nb.
- An optimum thickness exists for multilayer thin-film structure to achieve the highest performance.
- Optimum sample showed 23.8 % increase of the effective Hc1 at 0 K (180 mT → 223 mT) compared to that of pure bulk Nb.
- The experimental result is qualitatively consistent with the prediction of theory.
- The theory will guide the production of optimum thin-film structure.
- This shows the possibility of getting high-performance SRF cavities with thin-film technology in mass-production consistently.