

MESA: THE MAINZ ENERGY-RECOVERING SUPERCONDUCTING ACCELERATOR

A quick overview about the experiences with turn-key cryomodules for CW operation at Johannes Gutenberg-Universität Mainz

> T. Stengler On behalf of the MESA team

SRF Conference, Dresden, 2019

supported by the German Research Foundation (DFG):

Cluster of Excellence

Precision Physics, Fundamental Interactions and Structure of Matter

EXC 2118/2019

in cooperation with

Helmholtz-Institut Mainz

Where to find us

Institute for Nuclear Physics Johannes Gutenberg Universität Mainz

Where to find us

Institute for Nuclear Physics Johannes Gutenberg Universität Mainz

Where to find us

Institute for Nuclear Physics Johannes Gutenberg Universität Mainz

Accelerator Physics

Over 50 years experience: MAMI: CW, e^- , 1.5 GeV, RTM normal conducting

Since 2012: Second accelerator funded: **MESA** (CW , e^- , **superconducting**, **ERL**)

Mainz

Energy-Recovery

Superconducting

Accelerator

Mainz Energy-Recovery Superconducting Accelerator

- 1. Injection and pre-acceleration (all normal conducting)
- DC source 100 keV, 1+ mA
- Spinpolarized electrons
- Injector linac 5 MeV
 - CW, d.c. 100%
- Diagnostics

MESA Stage 1:

Energy ER/EB	[MeV]	105 / 155
Current ER/EB	[µA]	1000 / 150

Mainz Energy-Recovery Superconducting Accelerator

- 1. Injection and pre-acceleration (all normal conducting)
- 2. Main Accelerator
 - (2 cryomodules)
 - Recirculating LINAC
 - 2 cryomodules +25 MeV each
 - Energy recovery mode
 (2 acceleration passes)
 - External beam
 (3 acc. passes)

MESA Stage 1:

Energy ER/EB	[MeV]	105 / 155
Current ER/EB	[µA]	1000 / 150

Mainz Energy-Recovery Superconducting Accelerator

Enhanced

Mesa

ELBE-type

Cryomodules

MESA Enhanced ELBE-type Cryomodules

- XFEL/Saclay tuner
- BBU simulations ongoing ($I_{\rm th} \leq 12$ mA)
- Tests with beam at lbERLinPro

B.C. Kuske *et al.*, "Incorporation of a MESA Linac Modules into BERLinPro", in *Proc. IPAC'19*

MESA Enhanced ELBE-type Cryomodules

Concern: Heating of the HOM-Antenna

Changes:

PRISMA+

- Sapphire windows at HOM feedthrough
- Strip line in HOM cable for cooling

Cryomodule (2 XFEL Cavities @ 12.5 MV/m)

Production of 2 Cryomodules

- 2015: Ordered at RI Research Instruments GmbH
- Contract contains
 - Changes (XFEL/Saclay tuner, Sapphire feedthrough)
 - Specs (12.5 MV/m, $Q_0 \ge 1.25 \cdot 10^{10}$)
 - **Cryogenic Components** (valve box, 2K heat exchanger and JT valve, transfer line)
 - Stand alone control system (and connectable to EPICS)
 - With expertise of DESY, HZDR and industry partners

Milestones

- VT at DESY
- FAT at Mainz
- SAT at Mainz

Production of 2 Cryomodules

- Close cooperation between RI and Mainz University
 - Weekly conference calls
 - Personal meetings if necessary approx. 3 per year
 - Approval of all changes
 - Quality control: All RF **measurements** verified by JGU
 - Effective cooperation between RI and JGU
 - Close cooperation needed for project coordination

2 Cryomodules, including modifications, VB, JT valve and control system built by RI

Site Acceptance Test at HIM

Helmholtz-Institut Mainz

- → Several successful cooldown cycles to 1.8 K at the HIM RF bunker with both cryomodules
- → CW measurements up to 12.5 MV/m
- Static heat load more than 30% better than design value for both modules
- → SAT for first module approved recently (30.4.2019)

CAV008:

- Systematic error with LLRF test system occurred
- Helium flow indicates $Q_0 > 1.25 \cdot 10^{10}$ at 12.5 MV/m To be measured again...

Field emission because of a valve in a undefined state at the beam pipe

Particles could float in N2

CM for refurbishment

Test within 2019

Outlook

MESA

More information:

TUP041 – SRF Testing for MESA

THP054 – Cryogenic Installations

- Userfacility ERL
- At Johannes Gutenberg Universität Mainz
- Under construction (start 2022)
- Cryomodule production:
- Succesfull turn key CM production by industry
- CM1 with 2x 12.5 MV/m @ $Q_0 \ge 1.2 \cdot 10^{10}$
- CM2 at refurbishment
- CM transport under vacuum
- Tests with beam at bERLinPro

Outlook

MESA

- **Userfacility ERL**
- At Johannes Gutenberg J
- Under construction outor

Cryomodule prodv

- Succesful CM production by industry
- (2.5 MV/m @ $Q_0 \ge 1.2 \cdot 10^{10}$
- rurbishment
- ansport under vacuum
- Tests with beam at bERLinPro

sting for MESA

√ogenic Installations

More

at Mainz

TUP0

our atten