

Scope, Status, Issues and Plans

Marc Ross

LCLS-II-HE

01 July 2019, 19th SRF Conference

‡Fermilab Jefferson Lab

LCLS-II:

L2 CM in the SLAC tunnel – ready for interconnection

LCLS-II L2/L3 Cryomodule Assignments:

First 1300m of SLAC Linac

2.0 K Cryoplant

2 x 4kW

Grade Level Access for Cryomodule install

2x Cryoplant, Jefferson Lab contribution

2x4kW (@ 2K) = 8 kW capacity → 7.13 kW est. load **12% Margin (<Q0> 2.7e10)**

Load		Circuit		Unit
LCLS-II	70	5-8	2	K
CM static heat	4.56	0.63	0.26	(kW)
CM dynamic heat	3.22	0.27	3.02	(kW)
CDS heat	4.29	0.21	0.25	(kW)
Total	12.06	1.11	3.53	(kW)
Total mass flow	115.6	58.0	174.6	(g/s)
+ LCLS-II-HE				
CM static heat	7.02	0.97	0.41	(kW)
CM dynamic heat	5.04	0.43	6.40	(kW)
CDS heat	8.37	0.36	0.32	(kW)
Total	17.6	1.63	7.13	(kW)

M. Ross, SLAC. 19th SRF Conference, Dresden 01 July 2019

‡ Fermilab

- CM engineering/design
- 50% of 1.3 GHz CM
- 3.9 GHz CM
- Cryo Distribution
- Processing for high Q N doping

MOP092 Stanek

LCLS-II Project: Inter-laboratory partnership under the sponsorship of DOE Office of Science, Basic Energy Sciences

LCLS-II Partnership

For your consideration:

Three elements for technical advancement:

- 1. Science \rightarrow Motivation
- 2. Technical development \rightarrow Tools that enable

3. Industrial and Infrastructure backbone \rightarrow Capability/Cost

Step 3 is sometimes called the 'Innovation Valley of Death'

 \rightarrow Remarkable facility for remarkable <u>photon science</u> \leftarrow

What's next for photon science in the US? How to develop this valuable tool?

- Extraordinary convergence (2010 2013):
- 1) LCLS Success
- 2) Technical Development and Industrialization of a core linac technology \rightarrow

Superconducting Radio-Frequency (SCRF)

Old / new technology deployed together for LCLS-II hybrid FEL

Three large CW Superconducting linacs:

Deremeter	CEBAF	LEP2	LCLS-II	LCLS-II-HE	
Parameter	1994	1999	2021	2026	Substantial
N_cav	338	288	280	440	investment in
E_acc (MV/m)	7.5	7.2	18.5	20.8	CW SRF
Meters of SRF	169	490	296	466	
E_tot (GeV)	1.2	3.6	4.6	8.6	
<q0></q0>	4.0e9	3.2e9	2.7e10	2.7e10	
f (MHz)	1497	352	1300	1300	
Temp (K)	2.08	4.5	2.0	2.0	
Heat Load (kW)	5	53	3.7	7.3	
Heat Load kW/GeV	4.2	14.7*	0.8	0.8	
* @4.5K. Divide by 3					
for LEP2)					

11

SLAC

Issues:

- Cavity → Industrial Production with Nitrogen-doping
 - Flux Expulsion (Minimizing trapped B_amb)
- CM \rightarrow CW operation
 - 1. Field Emission / Multi-pactor Discharge
 - 2. Microphonics
 - 3. Shipping

Plans

LCLS-II Parameters:

Unit

Cavity Vertical Acceptance:

Numbore

Parameter	Value	Units	Tot	Parameters
Energy	4	GeV		E_acc
Beam I	100	µ Amp		Q0
Duty Factor	CW			R
RF	1300	MHz		HOM power
Cavity	8	per CM		Field
Cryomodules	35	each	40	emission
(add'l + spare)	5	each	40	Onset*
Linearizer CM	2	each	2	*Field Emissi
(spare)	1	each	3	production to
Cryoplant cap.	8	kW@2.0K		Emission at n
SSA	4.8	kW		

r al allielei 5	Numbers	Unit					
E_acc	>19	MV/m					
Q0	>2.5e10	(at 16 MV/m)					
R	<10	nΩ					
HOM power	<1.0	W					
Field	>17.5	MV/m					
emission							
Onset*							
*Field Emission limits changed 30% into							
production to require No Detectable Field							
Emission at maximum gradient							

3.9GHz: MOP051 Aderhold MOP069 Khabibouline MOP093 Kaluzny FRCAA3 *D.* Gonnella, SLAC THP100 *J.* Iversen, DESY

Nb Sheet and Cavities

376 ordered: 211/165 RI/EZ 304 required for 38 CM (2 prototype CM from ILC) 21 for LCLS-II-HE 51 remain (43 not qualified)

research instruments

9-cell bulk Nb cavity integration

- Integration with flux-gates and thermometry inside He vessel
 - Only prototype CMs
- Double-layer hermetic magnetic shield

Doping Summary – LCLS-II / LCLS-II-HE

2019 HE	<e_acc (max)=""> MV/m</e_acc>	Single Cell	Nine Cell		
	2/0 N-doping recipe	29.3 +/- 6	underway		
	2/6	24.9 +/- 5	MOP045 Gonnella		
	3/60	31.2 +/- 3	TUPUAS PAICZEWSKI		

2016-19 LCLS-II Production (2/6 doping) 23.0 +/- 3

2014	<e_acc (max)=""> MV/m</e_acc>	Single Cell	Nine Cell
	2/6	27 +/- 9	21.5 +/- 2
	20/30	22.5	

Technical Challenges:

FE Performance Over Time – Vertical Test: 2 vendors

- Changes to clean room procedures has consistently resulted in improved field emission
- Typically see a field emission rate of <20%

Ari Palczewski, JLab

Outline

Issues:

- Cavity → Flux Expulsion minimizing trapped B_ambient
- CM →
 - 1. Field Emission / Multi-pactor Discharge
 - 2. Microphonics
 - 3. Shipping

Plans

- B_ambient → from all sources: <u>a) material magnetization</u>, Thermo-electric currents, earth's field
- 2. Nb Flux Expulsion Efficiency \rightarrow <u>b) bulk property, c) cool-down dynamics</u>
- 3. Heat dissipation per unit trapped flux $\rightarrow \underline{doping}$ (doped Nb has increased heat 3x)

Cavity number

M. Ross, SLAC. 19th SRF Conference, Dresden 01 July 20

b) bulk property

<u>Nb Sheet</u>

forging and rolling determine grain size, structure and inter-grain

Studies underway to update specification with metallurgical qualification

Sam Posen, FNAL

Improvement in expulsion is correlated with grain growth

b) bulk property Heat Treatment to improve Flux-expulsion efficiency

c) cool-down dynamics

Magnetic Flux Expulsion

R&D in

Vertical Test

Sam Posen, FNAL

Ambient magnetic field during cooldown

osen

- Meissner Effect well below T_c, niobium tends to expel applied magnetic flux
- However, flux can become trapped in superconductor during cooldown
- Only within the last 5 years has R&D made it possible to reliably achieve strong expulsion during cooldown

Animation by S. Posen and M. Hassan

Implementation in LCLS-II Cryodmodule

c) cool-down dynamics

Single Cell in VT:

Expulsion vs. Trapping

ΔT (iris to iris) =4.7 / 0.7

B_{SC}/B_{NC}~1.7/1

2 1.8

1.6

1.4

1.2

1

0.8

0.6 0.4

0.2

0

nilab

25

Sam Posen, FNAL

SLAC

Issues:

- Cavity → Flux Expulsion
- CM → Two equivalent production lines; identical components and tooling
 - 1. Field Emission / Multi-pactor Discharge
 - 2. Microphonics
 - 3. Shipping

Plans

Two Production and Test Infrastructures; Common Supply Chain

- Fermilab:
 - Long history with TESLA-type CM, but no extended production experience
- Jefferson Lab:
 - Extensive production experience, but no direct experience with TESLAtype CM, monolithic (not segmented) linac
- ILC-GDE Proposal:
 - 'Plug-Compatibility' to allow independent development that meets interface requirements
 - For LCLS-II: Identical tooling, Identical parts, Equivalent Process leading to Equivalent Performance.
- Example: CM assembly with string under vacuum
 - Evaluated 04.2007 for DESY, Recommendation: Not without development/check

Fermilab Assembly

OPEN AREA

Two 30 TON CRANES

Jlab CM Assembly/Test

Cryomodule Assembly at JLab

CM Testing

JLab –

- 1. CMTF 'cave'
- 2. LERF two CM end-toend

Fermilab -

3. CMTS1

Basic Steps:

E_acc Max

- <u>Find the limit</u>, or reach admin.
- Limit 21 MV/m
- Record FE onset

E_acc Usable (128 MV)

- 0.5 below admin or
- 50 mr/hour
- One hour stable (SEL) operation

Q0 (2.7e10, 88W @2K)

- dP/dt with valves closed or
- Flow required for equilibrium

Endurance Test

- 10 to 16 hours at nominal (CM) integrated
 E_acc = 128 MV
- In GDR as much as possible

Cryomodule testing at FNAL

Based on LCLS-II CMs 02-16, avg is ~39 calendar days/CM

		VTS			CMTF Test				
	Cavity	Eacc* [MV/m]	FE onset	Q0@16MV/m	Max** Gradient [MV/m]	Usable Gradient*** [MV/m]	FE onset [MV/m]	Q0 @16MV/m 2K @ 30 g/s	Material
	CAV0540	21.4	none	2.8E+10	20.5	20.5	none	3.19E+10	TD 200/900
	CAV0530	20.6	24	2.9E+10	19	17	none	2.56E+10	TD 200/900
	CAV0533	25	none	3.0E+10	18.5	18.5	none	3.22E+10	TD 200/900
	CAV0529	19	none	3.2E+10	18.5	18	none	3.16E+10	TD 200/900
	CAV0525	19.5	none	3.3E+10	19	17	none	3.84E+10	TD 200/900
	CAV0535	25.7	none	3.5E+10	19	18.5	none	3.77E+10	TD 200/900
	CAV0067	18.8	none	3.4E+10	19	19	none	3.44E+10	NX-C, 200/975
⇒	CAV0517	18.8	none	3.0E+10	10	7.1	6	2.12E+10 [†]	TD 200/900
	Average	21.1		3.13E+10	17.9	16.9		3.16E+10	
	Total Voltage	175.2			148.9	140.7			

-SLAC

<Q0> (e10)

- JLab Q0 notes:
 - Initial JLab CM cooldown did not produce the high Q0
 - J-01 tested at Fermilab
 - Modifications (J-08...) and upgrades of the cryogenic system produced high Q0 results
- Different measurement methodology (dP/dt vs flow-rate)

THP051 Huque

Outline

Issues:

- Cavity → Flux Expulsion
- CM \rightarrow
 - 1. Field Emission / Multi-pactor Discharge
 - 2. Microphonics
 - 3. Shipping

Plans

SLAC

Cavity E_acc Usable

From CM testing, with / without detectable FE

Field Emission Onset Eacc of FNAL Cryomodules vs CM Both Clean rooms audited ~ CM F7/J9 F1 F2 F3 F4 F5 F6 **F7** F8 F9 F10 F11 F12 F13 F14 F15 F16 25.0 • • . . • 8 16 24 32 40 48 56 64 72 80 88 96 112 120 128 104 0 Cavity Number 1. One HEPA filter fan failed

 1. Internal audit changed the procedure to back fill WS0 slowly
 1. WS0 backfill upgraded
 1. WS1#8 backfill upgraded

 2. Procedure upgraded
 1. WS1#8 backfill upgraded

 1. New staff training
 1. New staff training

Field Emission Onset Eacc of JLab Cryomodules vs CM

20 Gradient Onset 18 Field emission on two CMs has been tracked to 16 process variation in the 14 CM02 CM03 CM04 CM07 CM08 CM12 clean room CM01 CM0 CM10 This has been fixed 12 10 JLab process is different: CM is assembled with string

under vacuum.

n.b. Chemically-reactive Plasma processing (SNS)

Cell-by-cell Neon-Oxygen processing has been successful at SNS (M. Doleans) Adapted to high QL 9-cell cavities and tested

- Use HOM coupler to feed 1st/2nd dipole pass-band
- No effect on doping performance

CM Assembly with String under vacuum – JLab practice \rightarrow

MAYD 7

6.420

SECTION A A

FPC cold with "Berry bolts"

066.5

,950]

k8x1.2

2.000

[2,950]

Removable FPC (cold) bellows restraint Cage of thin rods Assembled String <u>actively pumped ~</u> <u>2 months: Surface gas removed</u>
1) Base pressure 30x lower on arrival at SLAC

2) Multipactor processing reduced

Usable Gradient Limitation Mechanism at FNAL

- We regularly see usable gradients in the 17.5-18.5 MV/m range when the maximum gradient is closer to 20-21 MV/m
- Usable gradient requires 1 hour without quench, but regularly see cavities stable for many minutes then suddenly quench → Multipactor likely

TUP038 s.

Posen

• What could be causing these "sporadic" quenches?

		VTS		CMTF Test					
	Cavity	Eacc* [MV/m]	Q0@16MV/ m	Max** Gradient [MV/m]	Stable at CMTF*** [MV/m]	Q0 @16MV/m 2K @ 80 G/s	Q0 STDEV	Additional Trapped Field [mG]	Material
1	CAV0139	25.8	3.14E+10	21	19.5	3.32E+10	14.8%	0.24	TD 200/900
2	CAV0225	24	3.50E+10	19.5	18.5	3.74E+10	13.2%	0.22	TD 200/900
3	CAV0096	21	4.03E+10	20	17.5	3.83E+10	13.4%	0.82	TD 200/900
4	CAV0154	24.6	3.91E+10	20	17.5	3.74E+10	10.9%	0.79	TD 200/900
5	CAV0230	24	3.87E+10	19.5	17.5	3.34E+10	15.2%	1.36	TD 200/900
6	CAV0205	22.3	3.26E+10	19.5	19.0	3.47E+10	17.5%	0.21	TD 200/900
7	CAV0324	24	3.35E+10	20.5	17.5	3.77E+10	18.4%	-0.06	TD 200/900
8	CAV0150	21.4	3.46E+10	19	19.0	3.24E+10	15.8%	0.95	TD 200/900
	Average	23.4	3.57E+10	19.9	18.3	3.56E+10		0.6	
	Total Voltage	194.2			151.5				

MP Quench can increase flux trapping – Integration mechanism

- Flux concentration can be high just outside • the equator;
- Each quench admits more flux (depends on size of NC region and B_amb), increasing R until equilibrium is reached
- Thermal reset fast cool-down is required

Ultimate quench

Multi-pactor $\leftarrow \rightarrow$ Quench

Multipacting in Elliptical Cavities

 Range of fields in which quenches are observed is right where multipacting band is for this cavity shape

LCLS-II: 16 MV/m LCLS-II-HE: 21 MV/m

Time [day]

Outline

SLAC

Issues:

- Cavity \rightarrow Flux Expulsion
- CM →
 - 1. Field Emission / Multi-pactor Discharge
 - 2. Microphonics → Active Compensation with fast tuner
 - 3. Shipping

Plans

Cavity Detuning

LCLS-II-HE

Required RF input power (P_i) depends on the beam current (I_b), beam phase (φ_b) and cavity voltage (V_c), R/Q, detuning (Δf_c) and QL (~ coupler Q_{ext}) as

$$P_{i}(Q_{L},\Delta f_{c}) = \frac{V_{c}^{2}}{4(R/Q)Q_{L}} \left[\left(1 + \frac{I_{b}}{V_{c}} \frac{R}{Q} Q_{L} \cos \phi_{b} \right)^{2} + \left(2Q_{L} \frac{\Delta f_{c}}{f} + \frac{I_{b}}{V_{c}} \frac{R}{Q} Q_{L} \sin \phi_{b} \right)^{2} \right]^{10^{4}}$$

$$ICLS-II \qquad Q_{L} 4.1e7$$

• RF power depends quadratically on microphonic cavity detuning

Q, 6e7

- For a Gaussian distribution with sigma =1.7 Hz only one cavity per day in the linac would exceed our 10 Hz max assumption - measured sigma's are typically < 1.7 Hz
- Can use active detuning compensation with piezo actuators if needed.

C. Adolphsen

SLAC

Thermo-Acoustic Oscillations

2 valves in each CM to manage heat load – 88W (~8x EXFEL)

Optimal Qext and Allowed Gradients: LCLS-II-HE

- An increase of Q_{ext} from 4.1e7 to 6.0e7 reduces the required SSA power as shown in the left plot and increases the allowed maximum gradients by about 1 MV/m
 - Will likely optimize Qext for each cavity depending on its gradient and peak detuning
- With this choice of Qext, the right plot shows the allowed gradients as a function of SSA power and beam current (nominal currents are shown by asterisks)

SLAC

Outline

-SLAC

Issues:

- Cavity \rightarrow Flux Expulsion
- CM →
 - 1. Field Emission / Multi-pactor Discharge
 - 2. Microphonics
 - 3. Shipping Recovery from serious setback

Plans

Floating platform on wirerope springs

Loaded into shipping frame and ready to leave Fermilab for SLAC

Shipping to SLAC

Unloading at SLAC's grade-level entryway

shipment to SLAC: two severe beamline loss-of-vacuum incidents

2 shortcomings:

- 1) semi-trailer shipping frame springs were too stiff and
- 2) the FPC central 'floating flange' was insufficiently restrained
 → resonantly driven
- Failure of cold-side FPC bellows:
- The coaxial FPC is articulated and can move ~10 mm for cooldown.
- Central flange pair and thermal anchor shroud weigh 5 kg
- no mechanically stiff connection
- oscillates at roughly 15 Hz natural frequency

SLAC

Fundamental Power Coupler

G-10 block (below FPC) showing side to side rubbing

Damaged Bellows: Fatigue failure from cyclic motion

Power Coupler Bellows Fatigue limit

- Fatigue
 prediction
 (from
 manufacturer)
- Bench Tests
 (done by BNL)
 - Specification (readily achieved)

61

Fixes: Implemented 11.2018

Reconfigured CM isolation frame springs: lowered frame Z motion resonance from 13 Hz to 7 Hz

Constrained bellows motion: increased coupler Z motion resonance from 15 Hz to > 30 Hz

- Shipping frame reduce springs 4x
- Add neoprene spacer and cable tie
- (done through access ports after test;
- Removed at SLAC)

M. Ross, SLAC. 19th SRF Conference, Dresden 01 July 2019

Neoprene restraint with cable tie

Neoprene constraint sits on G-10 block, held with tie-wrap. Limits Z (coupler lateral) motion but permits axial movement.

Outline

-SLAC

Issues:

- Cavity \rightarrow Flux Expulsion
- CM →
 - 1. Field Emission / Multi-pactor Discharge
 - 2. Microphonics
 - 3. Shipping

Plans: LCLS-II-HE

LCLS-II CM testing:

- Fermilab tests: 17/19 JLab tests: 12/21
- 15/35 linac-ready at SLAC
 - Expect to finish CM shipping March 2020

SLAC

<E_acc> _{CM} = 18.5 MV/m; → Need 2.5 MV/m more for HE→ R&D (Gonnella) <Q0> _{CM} = 2.8e10, → OK for HE • (recent LCLS-II Q0 results excellent; provide margin)

LCLS-II-HE Parameters:

-SLAC

					vortical	
Parameter	Value	Units	Tot	Acceptan	ce:	
Energy	8	GeV		· · · · · · · · · · · · · · · · · · ·		
Beam	30	u Amp		Parameters	Numbers	Unit
(@8 GeV)				E_acc	>23	MV/m
	20	each		Q0	>2.5e10	(at 16 MV/m)
Cryomodules			R	<10	nΩ	
<u>55 CM Installed</u>				Field	>22	MV/m
(add'l + spare)	1	each		emission		
Cryoplant cap.	8	kW@2.0K		Onset*		
SŚA	7	kW				

HE Cavity Vertical

Date	SRF Production Milestone
Jan 2020	LCLS-II-HE CM procurement underway
March 2020	Last LCLS-II CM shipped to SLAC; LCLS-II prototype in assembly
June 2020	Improved cavity process; Prototype CM in test
Mid-2021	LCLS-II first beam
Begin 2023	LCLS-II-HE CM assembly complete (20 each + prototype)
2025/2026	Two 6-month downtime for LCLS-II-HE installation
Early 2027	Commissioning LCLS-II-HE

HE Cavity Process under development: 2/0

9-cell result, 06.2019

LCLS-II-HE Principal Technical Risks

- Can the LCLS-II cryomodules operated at an *average gradient of* 18.5 MV/m?
 - LCLS-II CM cavity testing encouraging
 - linac integration and commissioning 2022
- Can LCLS-II-HE build cryomodules that operate on *average at 20.8 MV/m*?
 - R&D plan underway; prototype CM spring 2020
- 3. Can the LCLS-II-HE linac be operated *reliably in the multipactoring band (17-23 MV/m)? With acceptable field emission*?
 - LCLS-II testing planned this summer

SLAC

Retrospective

- LCLS-II CM performance meets requirements
- →Notable achievement by the JLab/Fermilab team ←
- (started closeout process for LCLS-II CM)
- Five-year period has been extraordinarily productive; setbacks notwithstanding

 HE R&D encouraging, N-doping giving improved performance
Acknowledgements:

- The technical leadership at Fermilab and JLab: Ed Daly, Camille Ginsburg, Joe Preble, Rich Stanek, Dana Arenius, John Hogan, and Arkadiy Klebaner.
- At SLAC, the integration team led by Andrew Burrill.
- Close and effective collaboration with
 - DESY (Hans Weise),
 - CEA/Saclay (Olivier Napoly) and
 - Cornell (Matthias Liepe).

SLAC

End