

Cu electrodeposition for the manufacturing of seamless SRF cavities

June 30th – July 5th 2019

G. Rosaz, on behalf of the working group

CERN, Esplanade des particules 1, 1211 Geneva 23

G. Rosaz et al.

- 1. Context / problematic
- 2. Technical proposal
- 3. Samples characterization
- 4. Toward a real cavity fabrication
- 5. Conclusion / perspectives

G. Rosaz et al.

Nb/Cu Cavities - Background

COST

Thermal Stability

<u>Manufacturing</u>: Cu OFE (10euros/kg) vs Nb RRR300 (800euros/kg)

<u>Operational</u>: Operation @ 4.2 K / Simpler cryostat (stainless steel vs Titanium) Cu substrate ensures SC film stabilization wrt thermo-magnetic breakdown

Nb/Cu Cavities - Background

COST

Thermal Stability

<u>Manufacturing</u>: Cu OFE (10euros/kg) vs Nb RRR300 (800euros/kg)

<u>Operational</u>: Operation @ 4.2 K / Simpler cryostat (stainless steel vs Titanium) Cu substrate ensures SC film stabilization wrt thermo-magnetic breakdown

What about the performances?

G. Rosaz et al.

Nb/Cu should compete with bulk Nb cavities → High Q → High Gradient

Nb/Cu should compete with bulk Nb cavities → High Q → High Gradient How confident are we?

Nb/Cu should compete with bulk Nb cavities → High Q → High Gradient How confident are we?

Nb/Cu should compete with bulk Nb cavities → High Q → High Gradient How confident are we?

Nb/Cu Cavities - Forming

Standard Route

Nb/Cu Cavities - Forming

Standard Route

Seamless Route

G. Rosaz et al.

Mandrel footprint

Shape tolerance requirement in seamless process by spinning need strong R&D effort. On-going in INFN-LNL.

Shape tolerance requirement in seamless process by spinning need strong R&D effort. On-going in INFN-LNL (see Cristian Pira's talk).

Could we manufacture a seamless cavity with a controlled surface state and "machine grade" tolerances ?

Cu electroforming - proposal

Small diameter UHV chambers

Mandrel preparation	Thin film sputtering	Chamber electroforming	Mandrel removal			
				TID: 3mm, OD: 5mm		
\bigcirc	\bigcirc					
Al mandrel	NEG and Cu coatings	Copper electroforming	Al removal	Successfully developed at CERN [3] for CLIC and new generation light sources.		

Cu electroforming - proposal

Small diameter UHV chambers

Toward SRF cavities substrates ?

2.

[3]: Journal of Vacuum Science & Technology A 36, 021601 (2018); doi: 10.1116/1.4999539 G. Rosaz et al. SRF2019

Cu electroforming - Principle

Cu electroforming - Principle

Electrodeposition of Cu, 2 A/dm², 96 hours, copper sulphate-sulphuric acid bath

- 2-3 mm of Cu deposited (desired chamber wall thickness)
- Two plating procedures: DC plating with brightener and pulse plating without additives

Cu electroforming - approach

Samples

G. Rosaz et al.

Mechanical Properties

Microstructure

Mechanical Properties

Microstructure

3.

Hardness/Young modulus / UTS

G. Rosaz et al.

Cryogenic Properties

- RRR easily matches Cu OFE specs after thermal treatment

Cryogenic Properties

- RRR easily matches Cu OFE specs after thermal treatment
- PP can lead to very high RRR

Cryogenic Properties

- RRR easily matches Cu OFE specs after thermal treatment
- PP can lead to very high RRR

Residual Resistive Ratio - thermal

- More to come to study thermal treatment effects

Surface quality

	Roughness				
	Standard mai	Standard mandrel machining		Diamond mandrel machining	
μm	DC plating	Pulse plating	DC plating	Pulse Plating	
Al-R _a	(0.49		0.002	

Roughness

	Standard man	drel machining	Diamond mandrel machining		
μm	DC plating	Pulse plating	DC plating	Pulse Plating	
Al-R _a	0.	49	0.002		
Cu-R _a	0.15 / 0.43	0.64 / 0.66			

Roughness Standard mandrel machining **Diamond mandrel machining DC** plating **Pulse plating DC** plating **Pulse Plating** μm 0.49 0.002 Al-R_a Cu-R_a 0.15 / 0.43 0.64 / 0.66 0.030 / 0.017 0.030 / 0.027 3.00 3.00 2.00 2.00 1.00 1.00 0.00 -2.00 -20 -40 -50 -2.00 - -3.00 -2.00

Roughness **Standard mandrel machining Diamond mandrel machining DC** plating **Pulse plating DC** plating **Pulse Plating** μm Al-R_a 0.49 0.002 Cu-R₂ 0.15 / 0.43 0.64 / 0.66 0.030 / 0.017 0.030 / 0.027 1.00 0.00 -2.00

Surface quality can be easily controlled with the mandrel surface finish

Plated copper as good as OFE grade bulk

Mechanical properties Cryogenic properties Surface quality

Let's try to make a cavity

Dummy mandrels

4.

Old 1.5 GHz Al cavity recycling

For thickness profile evaluation and feasibility test

Dummy mandrels

4.

cavity recycling

For thickness profile evaluation and feasibility test

For electroforming optimization on low-cost substrate

Test mandrels (Al tubes welded on convex tanks)

Dummy mandrels

For thickness profile evaluation and feasibility test

For electroforming optimization on low-cost substrate

Old 1.5 GHz Al cavity recycling

Test mandrels (Al tubes welded on convex tanks)

First tests

Dummy mandrels

For thickness profile evaluation and feasibility test

For electroforming optimization on low-cost substrate

Old 1.5 GHz Al cavity recycling

Test mandrels (Al tubes welded on convex tanks)

First tests

G. Rosaz et al.

Thickness Profile

Sampling

Cut-out of the cavity

Iris thickness 2 to 3 times smaller than equator - Anticipated \rightarrow to be optimized later on

Hardness constant over the profile: DC: 114 HV0.1 PP: 55 HV0.1

1st Demonstrator

4.

Dummy cavity in PVD chamber

G. Rosaz et al.

Conclusion / Perspectives

- Electroformed copper has been extensively characterized
 - RRR up to 2000 upon thermal treatment
 - Roughness controlled by mandrel surface state
 - Mechanical properties comparable to OFE-Cu or annealed OFE-Cu
 - Chemical composition : OFE grade (not shown here)
- Flanges assembly demonstrated

Next steps:

- Real 1.3 GHz cavity to be manufactured Fully turned mandrel available
- Nb thin film coating using best recipe and RF testing
- Investigate thin film behaviour depending on substrate properties (roughness, purity...)
- Thickness profile optimization
- Cost study

Acknowledgments

THANK YOU FOR YOUR ATTENTION

Full authors list

L. Lain-Amador, M. Arzeo, S. Atieh, S. Calatroni, L. Ferreira, E. Garcia-Tabares Valdivieso, C. Garion, T. Koettig, M. Meyer, A.-T. Perez Fontenla, K. Puthran, G. Rosaz, K. Scibor, M. Taborelli, P. Trubacova, C. Yin Vallgren, W. Venturini-Delsolaro

Many Thanks to our technical staff

Miguel, Jean-Marie, Angelo, Damien, Paul, Ludovic, Sebastien

This R&D program is supported by the CERN's Technology Department, KT funds and FCC study.

