

Progress in SRF CH-Cavities for the HELIAC CW Linac at GSI

M. Miski-Oglu1^{1,2}

K. Aulenbacher^{1,2,4}, W. Barth^{1,2,5}, M. Basten³, C. Burandt^{1,2}, M. Busch³, T. Conrad³, F. Dziuba^{1,2,4}, V. Gettmann^{1,2}, M. Heilmann², T. Kürzeder^{1,2}, S. Lauber^{1,2,4}, J. List^{1,2,4}, H. Podlech³,
U. Ratzinger³, A. Rubin², M. Schwarz³, A. Schnase², S. Yaramyshev^{2,5}

¹HIM, Helmholtz Institute Mainz, Mainz, Germany ²GSI Helmholtzzentrum, Darmstadt, Germany ³IAP, Goethe Univ. Frankfurt, Frankfurt, Germany

⁴KPH, Johannes Gutenberg Univ., Mainz, Germany

⁵National Research Nuclear Univ., Moscow, Russia

M. Miski-Oglu , SRF19, 05.07.2019

JAHRE HIM

FAIR requirements:

- high beam currents
- low repetition rate (max. 3 Hz)
- low duty factor (0.1 %, pulse length for SIS18 only 100 μs)

"Super Heavy Element" requirements:

- relatively low beam currents
- high repetition rate (50 Hz)
- high duty factor (100 %, pulse length up to 20 ms)

Material Science at GSI

- Heavy lons (m > 200)
- High Beam Energy (up to 10 MeV/u)
- Continuous Beam Energy Variation (1.5 10 MeV/u)

Recent layout of the future superconducting cw HELIAC*

* HElmholz Linear ACcelerator

YEARS

Motivation for Superconducting Multi Cell CH-Cavity

360MHz Prototype

325 MHz CH

217 MHz Demonstrator/CH0

217 MHz CH1/CH2

- Room temperature IH structures have unprecedented high efficiency with real estate gradients up to 4 MV/m (HSI IH-Injector @ GSI)
- Expectation on superconducting CH-structures: Mechanical stability, high accelerating voltage per cavity

Field Profiles of CH-Cavity

H₂₁₁ mode of "pillbox" cavity

- Drift tubes are alternating connected to "+" and "-" potential
- **C**ross-bar-**H**-mode cavity \rightarrow CH cavity
- Multigap drift tube cavity for the acceleration of protons and ions in the low and medium energy range (0.05< β <0.6)
- Accelerating voltage up to 6 MV

360 MHz Prototype (H. Podlech@SRF'07 Beijing)

Main Patameters

- β=0.1
- f=360 MHz
- 19 gaps
- RRR=250
- length=1048mm
- diameter=277mm
- Ep/Ea=5.2
- Bp/Ea=5.7

Ea=7MV/m

• Ua=5.6

•

- Q₀=7x10⁸
- Ep=36MV/m
- Bp=40mT

Next Steps

- 325 MHz, 7 cell, β=0.1
- 217MHz, 15 cell, β=0.059

RF Design of the Demonstrator Cavity CH0 (F. Dziuba)

(based on beam dynamic design by S. Mineav 2009)

OTTO

	Design Challenges				Parameters 217 MF	iz Cavity CH	J
•	217MHz double frequency of				β Frequency	MHz	0.059
	HLI Injector	Inclined stem	Dynamic tuner	Static tuner	Accelerating cells	11112	15
•	β=0.059		a		Effective length $(\beta \lambda)$ Diameter (inner)	${ m mm}$ ${ m mm}$	$\frac{612}{409}$
•	Small transverse dimensions		man Mar		Tube aperture Wall thickness	mm	$egin{array}{cccc} 18 & / & 20 \ & 4 \end{array}$
•	Minimal peak fields				df/dp^*	Hz/mbar	50
•	Eacc=5.5MV/m (conservative)			-	$G R_a/Q_0$	Ω	$\frac{52}{3240}$
•	Mechanical stability	eparation ports	K	$\langle \mathcal{V} \rangle$	$R_a R_S$	${ m k}\Omega^2$	168 5.5
•	Suppression of multipacting		He	lium vessel	E_a (design) E_p/E_a	$\mathbf{N}\mathbf{I}\mathbf{V}$ / $\mathbf{I}\mathbf{I}\mathbf{I}$	$\begin{array}{c} 5.5 \\ 6.3 \end{array}$
•	Fraguanay tuning				B_p/E_a	m mT/(MV/m)	5.7

*without He vessel

• Frequency tuning

• Meet resonance frequency

during manufacturing

7

- Production of stems with tubes
- Welding of inner cross bar structure (girders, stems, bellow tuners)
- Welding of cylinder walls

- Production of stems with tubes
- Welding of inner cross bar structure (girders, stems, bellow tuners)
- Welding of cylinder walls
- Production of end caps
- Control of resonance frequency after each following steps with pressed end caps
- Trimming and welding of 4 static tuners
- Trimming and welding of left end cap
- Trimming and welding of next 3 static tuners
- Trimming and welding of right end cup
- 50 µm BCP treatment
- Trimming and welding of last 2 static tuners

- Production of stems with tubes
- Welding of inner cross bar structure (girders, stems, bellow tuners)
- Welding of cylinder walls
- Production of end caps
- Control of resonance frequency after each following steps with pressed end caps
- Trimming and welding of 4 static tuners
- Trimming and welding of left end cap
- Trimming and welding of next 3 static tuners
- Trimming and welding of right end cup
- 50 µm BCP treatment
- Trimming and welding of last 2 static tuners
- 25 µm BCP treatment

- Production of stems with tubes
- Welding of inner cross bar structure (girders, stems, bellow tuners)
- Welding of cylinder walls
- Production of end caps
- Control of resonance frequency after each following steps with pressed end caps
- Trimming and welding of 4 static tuners
- Trimming and welding of left end cap
- Trimming and welding of next 3 static tuners
- Trimming and welding of right end cup
- 50 µm BCP treatment
- Trimming and welding of last 2 static tuners
- 25 µm BCP treatment
- HPR
- 4K rf-test
- HPR
- Welding of He-Jacket

- Production of stems with tubes
- Welding of inner cross bar structure (girders, stems, bellow tuners)
- Welding of cylinder walls
- Production of end caps
- Control of resonance frequency after each following steps with pressed end caps
- Trimming and welding of 4 static tuners
- Trimming and welding of left end cap
- Trimming and welding of next 3 static tuners
- Trimming and welding of right end cup
- 50 µm BCP treatment
- Trimming and welding of last 2 static tuners
- 25 µm BCP treatment
- HPR
- 4K rf-test
- HPR
- Welding of He-Jacket

indle

Main properties of the tuning system:

- Enables slow & fast frequency adjustment
- Capacitive bellow tuner
- Max. mechanical displacement ±1 mm (≈ ±60 kHz)
- Lever with pivot point ratio $\approx 2:1$
- Stepping motor with gear reduction ratio 50:1
- 0.05 μ m per step \rightarrow very fine frequency adjustment
- Piezo actuator ,connected in series' with slow tuning unit
- Required displacement of piezo ±6 μm (≈ ±360 Hz)
- All design goals have been achieved!

High Power Coupler

Coupler design based on the work of S. Kazakov, Fermilab

- Capacitive coupling of RF power
- Devided into cold & warm part by 2 ceramic windows (Al₂O₃), TiN coated
- 5 kW cw operation, cold window connected to LN₂ supply
- 216.816 MHz operation frequency with 33 MHz bandwidth

RF Tests of the Cavity at IAP and GSI

- Acceleration of ions over design up to A/q = 12٠
- R&D for further improvement of rf-performance ٠

55

mТ

 B_p

39

Field Emission

- Rapidly increase of total losses @ E_a = 5 MV/m (E_p = 32 MV/m)
- Strong indication for field emitter activation
- Reduced total losses after anew HPR
- Minor deviation of total losses from Ohmic law @ $E_a = 7.8$ MV/m ($E_p = 49$ MV/m)
- Field emission is reduced due two anew HPR!

Series Cavty

Design goals

- Easier manufacturing
- Less static tuner

JAHRE HIM

- 2 dynamic tuners
- Higher mechanical stability
- Minimal peak fields
- Less gaps \rightarrow flexible beam dynamics
- Two identical cavities
- β=0.07
- Ea=5.5MV/m

Design goals

- Ea=7.1 MV/m
- Unified stem geometry across CH3/CH4/CH5 "series"
- Individual β

Performance of "series"

- All cavities at 4K are limited by surface peak electric field Ep.
- Multipacting induced quench?

Experimental setup of the demonstrator at GSI

Demonstrator at GSI-High Charge State Injector (HLI)

Matching Line for the Beam Test

- HLI provides Ar¹¹⁺, Ar⁹⁺, Ar⁶⁺, He²⁺ @ 1,4 MeV/u
- Steering magnets
- Additional Re-Buncher
- Quadrupole doublet
- Profile Grid
- Phase probes for TOF measurement of beam energy (also as BPM)
- Beam current transformers for transmission measurement
- Bunch shape monitor (Feschenko monitor)
- Slit-Grid emittance measurement device
- 6d characterization of the beam
- Test Bench of components and procedures for future HELIAC

Beam Energy vs. RF-Phase and -Amplitude

- Beam energy measured by TOF
- Independent rf-calibration of pick-up
- Accelerating field calculated by CST
- Amplitude of the field scaled according rf-calibration
- Energy gain calculated by tracking of particles in E-field
- Agreement between measurement and calculation
- Smooth energy variation
- High beam transmission

Next Phase: Advanced Demonstrator

- New cryo module layout containing demonstrator CH cavity,
 2 short CH cavities, 1 re-buncher and 2 solenoids
- Simplified cavity design (easier manufacturing & surface processing)
- CH1 & CH2 are already in testing (delivery at 4th quarter of 2019)
- Re-buncher cavity is designed and Nb material is ordered
- Cryostat is ordered, expected delivery Q2 2020
- Solenoids are tendered

- 4 rf Amplifiers are tendered
- R&D on single aux. components is in advanced stadium
 - Rf-power couplers
 - Tuner mechanics
 - cold BPM
 - low level rf
 - New radiation protection shelter
- Connection to cryoplant

New Cryomodule Layout

Design features & improvements

- 4 rectangular service doors
- On site alignment of each component to the beam line with a laser tracker
- Assembly of RF power couplers and solenoid current leads through the doors
- Nuclotron suspension of single components
- Segmented support frame, mechanically and thermally coupled to outer tank (300 K)
- Thermal shield inside of support frame
- Segmented frame standing on dedicated points of the bottom of the cryostat
- Deformations of outer vessel during evacuation do not affect the position of the frame
- Trans. position of each component will be preserved within ± 0.1 mm during cool down

JAHRE HIM

New Cryomodule Layout

- Already ordered, expected delivery in 04/2020
- Built by Cryoworld, Advanced Cryogenic, Netherlands

CRYOMODULE CM1				
Inner length	mm	4500		
Inner diameter	mm	1500		
Material vessel		Stainless steel 1.4404		
Insulating vacuum	mbar	< 1·10 ⁻⁶		
Max. system pressure	bar	< 0.5		
Operating temperature	к	4.2		
Temperature thermal shield	к	40		
Max. static losses (stand by)	w	< 5		

Infrastructure @ HIM

02/2015	Funding of the Advanced Demonstrator within POF3
09/2016	Ordering of two short CH-cavities
11/2018	Tendering of cryostat
05/2019	Modification of radiation protection shelter @GSI
10/2019	Delivery of short cavities
12/2019	Link of testing area to STF cryoplant
04/2020	Delivery of cryostat
04/2021	Assembly of cryomodule @ HIM
10/2021	Beamtest @ GSI
۲	۶ ۶

- CSCY: H. Kollmus, C. Schröder, A. Beusch, M. Kauschke
- CSVS: P. Horn, M. Schweda
- GA: G. Gruber
- LRF: E. Plechov, A.Schnase
- TRI: T. Lüding