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Abstract: Analysis of results
Measurements of magnetic sensitivity to trapped flux on several type of cavity geometries - From Spiral2 QWR measurement : The difference between the vertical and horizontal
have been performed at IPNO showing a clear geometrical effect. Magnetic sensitivity sensitivities suggest a strong geometrical dependence.
depends not only on material quality but also on the cavity geometry and on the residual - Real sensitivity 1s consistently lower than theoretical sensitivity.
magnetic field orientation. A presentation of experimental data will be done. These will be as - Slow (~ 20 mK/s with thermal gradient <1K) and fast (~100 mK/s with thermal gradient
well compared to the theoretical magnetic sensitivities calculated thanks to a simple Labview >30K) show different magnetic field step (slow : AB~10mG, fast : AB~30mG) but no
routine difference 1s observed on Qo. [4]
- The more magnetic field is trapped, the stronger the linear dependence of the surface
. % resistance with accelerating gradient 1s. In agreement with literature [6]
Expe rime nt a I SEt u p an d resu Its e - The magnetic sensitivity 1s temperature dependent. In agreement with literature [7]
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