Author: Vennekate, H.
Paper Title Page
MOP100 Design Upgrades of the Next Superconducting RF Gun for ELBE 326
 
  • J. Teichert, A. Arnold, S. Ma, P. Murcek, J. Schaber, H. Vennekate, R. Xiang, P.Z. Zwartek
    HZDR, Dresden, Germany
  • K. Zhou
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  Funding: Funding is provided by the China Scholarship Council.
At the ELBE user facility a superconducting RF photoinjector has been in operation since several years. The injector is routinely applied for THz radiation production in user beam experiments. For future applications higher bunch charges, shorter pulses and lower transverse emittances are required. Thus it is planned to replace this SRF gun by a next version with an RF cavity reaching a higher acceleration gradient. We also present improvements concerning the SC solenoid and the photocathode exchange system and report on the status of construction and testing of this SRF gun cryomodule.
 
poster icon Poster MOP100 [2.199 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP100  
About • paper received ※ 27 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP032 SRF Gun and SRF Linac Driven THz at ELBE Successfully in User Operation 915
 
  • R. Xiang, A. Arnold, P.E. Evtushenko, S. Kovalev, U. Lehnert, P.N. Lu, S. Ma, P. Michel, P. Murcek, A.A. Ryzhov, J. Schaber, Ch. Schneider, J. Teichert
    HZDR, Dresden, Germany
  • H. Vennekate
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
  • I. Will
    MBI, Berlin, Germany
 
  Funding: The work was partly supported by the German Federal Ministry of Education and Research (BMBF) grant 05K12CR1 and Deutsche Forschungsgemeinschaft (DFG) project (XI 106/2-1).
The first all-SRF accelerator driven THz source has been operated as a user facility since 2018 at ELBE radiation center. The CW electron beam is extracted from SRF gun II, accelerated to relativistic energies and compressed to sub-ps length in the ELBE SRF linac with a chicane. THz pulses are produced by pass-ing the short electron bunches through a diffraction radiator (CDR) and an undulator. The coherent THz power increases quadratically with bunch charge. The pulse energy up to 10 µJ at 0.3 THz with 100 kHz has been generated.
 
poster icon Poster THP032 [1.207 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP032  
About • paper received ※ 02 July 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)