Author: Schaffran, J.
Paper Title Page
MOP023 Nitrogen Infusion Sample R&D at DESY 77
SUSP002   use link to see paper's listing under its alternate paper code  
 
  • C. Bate, A. Dangwal Pandey, A. Ermakov, B. Foster, T.F. Keller, D. Reschke, J. Schaffran, S. Sievers, N. Walker, H. Weise, M. Wenskat
    DESY, Hamburg, Germany
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • G.D.L. Semione, V. Vonk
    DESY Nanolab, FS-NL, Hamburg, Germany
  • A. Stierle
    University of Hamburg, Hamburg, Germany
 
  The European XFEL continuous wave upgrade requires cavities with reduced surface resistance (high Q-values) for high duty cycle while maintaining high accelerating gradient for short-pulse operation. A possible way to meet the requirements is the so-called nitrogen infusion procedure. However, a fundamental understanding and a theoretical model of this method are still missing. The approach shown here is based on sample R&D, with the goal to identify key parameters of the process and establish a stable, reproducible recipe. To understand the underlying processes of the surface evolution, which gives improved cavity performance, advanced surface analysis techniques (e.g. SEM/EDX, TEM, XPS, TOF-SIMS) are utilized. Additionally, a small furnace just for samples was set up to change and explore the parameter space of the infusion recipe. Results of these analyses, their implications for the cavity R&D and next steps are presented.  
poster icon Poster MOP023 [3.759 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP023  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP026 A Cross-Lab Qualification of Modified 120°C Baked Cavities 90
 
  • M. Wenskat, D. Reschke, J. Schaffran, L. Steder, M. Wiencek
    DESY, Hamburg, Germany
  • D. Bafia, A. Grassellino, O.S. Melnychuk
    Fermilab, Batavia, Illinois, USA
  • A.D. Palczewski
    JLab, Newport News, Virginia, USA
  • M. Wiencek
    IFJ-PAN, Kraków, Poland
 
  Funding: This work was supported by the Helmholtz Association within the topic Accelerator Research and Development (ARD) of the Matter and Technologies (MT) Program and by the BMBF under the research grant 05H18GURB1.
Within a global effort to understand and standardize the nitrogen-infusion and the low T bake procedure, one large grain and two fine grain single-cell cavity were treated and tested at FNAL and then send to other labs including DESY and JLab for further studies.
 
poster icon Poster MOP026 [0.813 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP026  
About • paper received ※ 20 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP034 European XFEL: Accelerating Module Repair at DESY 127
 
  • D. Kostin, J. Eschke, K. Jensch, N. Krupka, D. Reschke, S. Saegebarth, J. Schaffran, M. Schalwat, P. Schilling, M. Schmökel, S. Sievers, N. Steinhau-Kühl, E. Vogel, H. Weise, M. Wiencek, B. van der Horst
    DESY, Hamburg, Germany
 
  The European XFEL is in operation since 2017. The design projected energy of 17.5 GeV was reached, even with the last 4 main linac accelerating modules not yet installed. 2 out of 4 not installed modules did suffer from strong cavity performance degradation, namely increased field emission, and required surface processing. The first of two modules is reassembled and tested. The module test results confirm a successful repair action. The module repair and test steps are described together with cavities performance evolution.  
poster icon Poster MOP034 [1.863 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP034  
About • paper received ※ 17 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUFUA6
Surface Analysis of Niobium After Thermal/Gas Treatments via Samples - Review  
 
  • A. Dangwal Pandey, T.F. Keller, H. Noei, D. Reschke, J. Schaffran, G.D.L. Semione, V. Vonk, H. Weise, M. Wenskat
    DESY, Hamburg, Germany
  • C. Bate, A. Stierle
    University of Hamburg, Hamburg, Germany
 
  Thermal treatments of SRF Nb cavities - including the well-established 120°C bake and the recently reported N-infusion - are shown to improve the cavity performance significantly; however, the underlying physical phenomenon is not fully understood. A short review will be presented on surface characterization of niobium material subjected to various thermal and gas exposure protocols and how the findings correlate with observed SRF properties. Moreover, recent results obtained on single-crystal Nb samples - heated in different vacuum environments and characterised by means of X-ray photoelectron spectroscopy and grazing-incidence X-ray diffraction, electron microscopy, energy dispersive X-ray spectroscopy and time-of-flight secondary ion mass spectroscopy will be discussed.  
slides icon Slides TUFUA6 [6.968 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP080 Status of the All Superconducting Gun Cavity at DESY 1087
 
  • E. Vogel, S. Barbanotti, A. Brinkmann, Th. Buettner, J.I. Iversen, K. Jensch, D. Klinke, D. Kostin, W.-D. Möller, A. Muhs, J. Schaffran, M. Schmökel, J.K. Sekutowicz, S. Sievers, L. Steder, N. Steinhau-Kühl, A. Sulimov, J.H. Thie, H. Weise, M. Wenskat, M. Wiencek, L. Winkelmann, B. van der Horst
    DESY, Hamburg, Germany
 
  At DESY, the development of a 1.6-cell, 1.3 GHz all superconducting gun cavity with a lead cathode attached to its back wall is ongoing. The special features of the structure like the back wall of the half-cell and cathode hole require adaptations of the procedures used for the treatment of nine-cell TESLA cavities. Unsatisfactory test results of two prototype cavities motivated us to re-consider the back-wall design and production steps. In this contribution we present the status of the modified cavity design including accessories causing accelerating field asymmetries, like a pick up antenna located at the back wall and fundamental power- and HOM couplers. Additionally, we discuss preliminary considerations for the compensation of kicks caused by these components.  
poster icon Poster THP080 [7.365 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP080  
About • paper received ※ 20 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)