Paper | Title | Page |
---|---|---|
MOFAB4 |
Overview and SRF Requirements of the CiADS Project | |
|
||
Chinese initiative Accelerator Driven System started constructing in 2018. It consists a superconducting linac with 500 MeV and 5 mA; an LEB coolant fast reactor with 7.5 MW. The first beam coupling with reactor will be in 2024. The sc linac employed 5 families of superconducting resonators, two types of HWRs (β=0.1 and β=0.19), one type of double spokes (β=0.42) and two types of ellipticals (β=0.62 and β=0.82). The whole system will operate in 2 K. A space has been reserved for future upgrading to 1 GeV. As a demo of front-end of ADS, the CAFe (China ADS Front-end demo linac) has been developed and commissioned to verify the SRF techniques, high power CW beam and RAMI. 45 kW proton beam has been delivered to the dump and lasted more than 100 hours at the beginning of 2019. According to the operation experience, the challenge is the stability and performance of cavities under the heavy beam loading, some phenomenas have been observed. Up to now, the design of bulk Nb cavities have been finished and the prototype fabrication is on going. The techniques of Nb/Cu cavity and Nb3Sn are also developed in IMP for the future project of ADS. | ||
![]() |
Slides MOFAB4 [12.465 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP080 | Tuner Design and Test for 166.6 MHz SRF Cavity of HEPS | 642 |
|
||
The 166.6 MHz superconducting RF cavities have been proposed for the High Energy Photon Source (HEPS), a 6 GeV kilometer-scale light source. The cavity is of quarter-wave type made of bulk niobium with ¿=1. Each cavity will be operated at 4.2 K providing 1.2 MV accelerating. To compensate the frequency change due to manufacturing uncertainty, Lorentz force, beam loading, He pressure and microphonics the plunger tuner and gap tuner are chosen as options. Now the plunger tuner and low temperature gap tuner have been test with cavity, while the warm gap tuner is being designed. Details of the design and summary of the test results of the two type tuners with cavity are presented in this paper. | ||
![]() |
Poster TUP080 [1.141 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP080 | |
About • | paper received ※ 22 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WETEB8 | The Fundamental Power Coupler for CEPC Booster Cavity | 789 |
|
||
Funding: Supported by National natural Science Foundation of China ( 11475203) 96 Tesla type 1.3GHz 9-cell superconducting cavities, housed in eight 12m-long cryomodules, will be adopted for CEPC booster. Each cavity equips with one variable coupling, double-window fundamental power coupler (FPC). The FPC will operate at RF power up to 20 kW at quasi-CW mode. A variable coupling from 4·106 to 107 is required to meet different operation modes of Higgs, W and Z. A new coupler that employs a 50 Ω coaxial line with bellow structures, a cylindrical warm window, a coaxial planar cold window and a coupling adjusting actuator has been designed. Then two prototypes have been fabricated and high power tested up to CW 70 kW successfully. In this paper, the design, fabrication and high power test of the prototype FPCs will be presented. |
||
![]() |
Slides WETEB8 [9.971 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEB8 | |
About • | paper received ※ 23 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP089 | Development of Superconducting RF Double Spoke Cavity at IHEP | 1114 |
SUSP010 | use link to see paper's listing under its alternate paper code | |
|
||
The China Spallation Neutron Source (CSNS) is de-signed to produce spallation neutrons. CSNS upgrade is planned to increase beam power by inserting a SRF linac after drift tube linac (DTL). IHEP is developing a 325MHz double spoke cavity at ¿0 of 0.5 for the CSNS SRF linac. The cavity shape was optimized to minimize Ep/Ea while keeping Bp/Ep reasonably low. Meanwhile, mechanical design was applied to check stress, Lorentz force detuning and microphonic effects, and to minimize pressure sensitivity. A new RF coupling scheme was pro-posed to avoid electrons hitting directly on ceramic win-dow. After fabrication and post processing of cavity, the cavity reached Bp of 120mT at Eacc = 13.8MV/m and Q0 = 1.72·1010 under vertical test at 2K. | ||
![]() |
Poster THP089 [2.176 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP089 | |
About • | paper received ※ 22 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRCAA5 |
SRF Activities and Progress at IHEP | |
|
||
There are several active SRF projects at IHEP, including HEPS, CEPC, CSNS upgrade, SHINE and PAPS SRF facility. Four cryomodules with 166.6 MHz β=1 QWR cavities are proposed for HEPS, while each cavity will providing 1.2 MV and 145 kW to the electron beam. The vertical and horizotal tests of the proof-of-principle cavities were recently conducted. 650 MHz 2-cell cavities and 1.3 GHz 9-cell cavities were proposed for the CEPC, and high Q technology is adopted by the project. Infrastructures are developed for the high Q study, while R&D on single-cell cavities are under-way. Efforts on learning mass-production of cavities and cavity-string were also made for both CEPC and SHINE projects. SRF linac from 80 MeV to over 300 MeV were adopted for the upgrade of CSNS, with 325 MHz Double-spoke cavities at β=0.50 and 650 MHz-5cell elliptical cavities at β=0.65. The PAPS SRF facility is biased on mass production for large SRF projects, i.e. aiming at assembly and testing of 200-400 cavities & couplers and 20 cryomodules per year. The equipment installation and commissioning is on going. The activities and progress of these SRF projects with be addressed in this presentation. | ||
![]() |
Slides FRCAA5 [13.318 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |