Paper |
Title |
Page |
MOP070 |
Investigation of the Critical RF Fields of Superconducting Cavity Connections |
230 |
SUSP026 |
|
|
- J.C. Wolff, J.I. Iversen, D. Klinke, D. Kostin, D. Reschke, S. Sievers, A. Sulimov, J.H. Thie, M. Wiencek
DESY, Hamburg, Germany
- R. Wendel, J.C. Wolff
HAW Hamburg, Hamburg, Germany
|
|
|
To optimise the length of the drift tube of a superconducting cavity (SC), it is required to know the critical value of the RF fields to prevent a potential early quench at the flange connection in case of a drift tube length reduction. To avoid changes on the SC which has been used for the tests, all RF cryogenic experiments have been carried out by using a cylinder in the center of a 1-cell cavity drift tube to increase the field magnitude at the connection. This cylinder has been designed and optimised by RF simulations to provide a field density at the connection twice as high as at a chosen reference point near the iris. Hence also a test SC with a comparatively low gradient can be used without causing field restrictions. In this contribution an approach to investigate the field limitations of 1.3 GHz TESLA-Shape SC connections and thereby the minimal drift tube length based on simulations will be presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-SRF2019-MOP070
|
|
About • |
paper received ※ 23 June 2019 paper accepted ※ 04 July 2019 issue date ※ 14 August 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THP080 |
Status of the All Superconducting Gun Cavity at DESY |
1087 |
|
- E. Vogel, S. Barbanotti, A. Brinkmann, Th. Buettner, J.I. Iversen, K. Jensch, D. Klinke, D. Kostin, W.-D. Möller, A. Muhs, J. Schaffran, M. Schmökel, J.K. Sekutowicz, S. Sievers, L. Steder, N. Steinhau-Kühl, A. Sulimov, J.H. Thie, H. Weise, M. Wenskat, M. Wiencek, L. Winkelmann, B. van der Horst
DESY, Hamburg, Germany
|
|
|
At DESY, the development of a 1.6-cell, 1.3 GHz all superconducting gun cavity with a lead cathode attached to its back wall is ongoing. The special features of the structure like the back wall of the half-cell and cathode hole require adaptations of the procedures used for the treatment of nine-cell TESLA cavities. Unsatisfactory test results of two prototype cavities motivated us to re-consider the back-wall design and production steps. In this contribution we present the status of the modified cavity design including accessories causing accelerating field asymmetries, like a pick up antenna located at the back wall and fundamental power- and HOM couplers. Additionally, we discuss preliminary considerations for the compensation of kicks caused by these components.
|
|
|
Poster THP080 [7.365 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-SRF2019-THP080
|
|
About • |
paper received ※ 20 June 2019 paper accepted ※ 02 July 2019 issue date ※ 14 August 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|