Author: Huang, G.
Paper Title Page
MOFAB4
Overview and SRF Requirements of the CiADS Project  
 
  • Y. He, Q. Chen, Z. Gao, H. Guo, G. Huang, Y.L. Huang, T.C. Jiang, C.L. Li, S.H. Liu, T. Tan, Y.Q. Wan, F.F. Wang, J.Q. Wu, W.M. Yue, B. Zhang, J.H. Zhang, S.H. Zhang, S.X. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
  • J.P. Dai, F.S. He, Z.Q. Li, W.M. Pan
    IHEP, Beijing, People’s Republic of China
  • T.C. Jiang
    University of Chinese Academy of Sciences, Beijing, People’s Republic of China
 
  Chinese initiative Accelerator Driven System started constructing in 2018. It consists a superconducting linac with 500 MeV and 5 mA; an LEB coolant fast reactor with 7.5 MW. The first beam coupling with reactor will be in 2024. The sc linac employed 5 families of superconducting resonators, two types of HWRs (β=0.1 and β=0.19), one type of double spokes (β=0.42) and two types of ellipticals (β=0.62 and β=0.82). The whole system will operate in 2 K. A space has been reserved for future upgrading to 1 GeV. As a demo of front-end of ADS, the CAFe (China ADS Front-end demo linac) has been developed and commissioned to verify the SRF techniques, high power CW beam and RAMI. 45 kW proton beam has been delivered to the dump and lasted more than 100 hours at the beginning of 2019. According to the operation experience, the challenge is the stability and performance of cavities under the heavy beam loading, some phenomenas have been observed. Up to now, the design of bulk Nb cavities have been finished and the prototype fabrication is on going. The techniques of Nb/Cu cavity and Nb3Sn are also developed in IMP for the future project of ADS.  
slides icon Slides MOFAB4 [12.465 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP064 Flashover on RF Window of HWR SRF Cavity 597
SUSP006   use link to see paper's listing under its alternate paper code  
 
  • X. Liu, Z. Gao, Y. He, G. Huang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Breakdown on the RF ceramic windows always happen in different kinds of accelerator. It is one of the main limitations in current day superconducting cavities and couplers. The PT signal trip caused by discharge on the surface of RF ceramic window lead LLRF control system trip which affect the stable operation of the superconducting linac. Simulation of field emission electron trajectory in superconducting cavity and experimental measurements of the frequency of the pickup signal trip have been performed. A lot of aged window with characteristics of flashover were studied by means of material characterization. The flashover on the surface of RF ceramic window caused by electrons and field emission provide the origin of initial electrons. A modified design of the pickup antenna have solved the PT pickup trip problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP064  
About • paper received ※ 23 June 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)