Author: Crahen, W.
Paper Title Page
MOP015 RF Performance Sensitivity to Tuning of Nb3Sn Coated CEBAF Cavities 55
 
  • G.V. Eremeev, W. Crahen, J. Henry, F. Marhauser, C.E. Reece
    JLab, Newport News, Virginia, USA
  • U. Pudasaini
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Funding: Co-Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.
Nb3Sn has the potential to surpass niobium as the material of choice for SRF applications. The potential of this material stems from a larger superconducting energy gap, which leads to expectations of a higher RF critical field and a lower RF surface resistance. The appeal of better superconducting properties is offset by the relative complexity of producing practical Nb3Sn structures, and Nb3Sn sensitivity to lattice disorder challenges the use of the material for practical applications. Such sensitivity is indirectly probed during SRF cavity development, when the cavity is tuned to match the desired accelerator frequency. In the course of recent experiments we have coated and tuned several multi-cell cavities. Cold RF measurements before and after tuning showed degradation in cavity performance after tuning. The results of RF measurement were compared against strain evolution on Nb3Sn surface during tuning based on CST and ANSYS models.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP015  
About • paper received ※ 26 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)