Author: Craft, J.
Paper Title Page
MOP005 The Facility for Rare Isotope Beams Superconducting Cavity Production Status and Findings Concerning Surface Defects 31
 
  • C. Compton
    NSCL, East Lansing, Michigan, USA
  • H. Ao, J. Asciutto, K. Elliott, W. Hartung, S.H. Kim, E.S. Metzgar, S.J. Miller, J.T. Popielarski, L. Popielarski, K. Saito, T. Xu
    FRIB, East Lansing, Michigan, USA
  • J. Craft
    SLAC, Menlo Park, California, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB), located on the campus of Michigan State University (MSU) will require 324 Superconducting Radio Frequency (SRF) cavities in the driver linac. Four types of cavities of two classes, quarter-wave (β=0.041 and 0.085) and half-wave (β=0.29 and 0.53), will be housed in 46 cryomodules. To date, FRIB has tested over 300 cavities in vertical Dewar tests as part of the certification procedures. Incoming cavities, fabricated in industry, are sequenced through acceptance inspection and checked for non-conformance. If accepted, the cavities are processed, assembled onto a vertical test stand, and cold tested. A large database of cavity surface images has been collected with the aid of a borescope camera. Borescope inspection is a standard step that is performed at incoming inspection, post-acid bulk etch, and after failed tests (if necessary) for each cavity, in order to locate any non-conformances. Findings of surface defects relating to degraded cavity performance will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP005  
About • paper received ※ 02 July 2019       paper accepted ※ 13 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)