Author: Carra, F.
Paper Title Page
MOP099 Design of Crab Cavity Cryomodule for HL-LHC 320
 
  • T. Capelli, K. Artoos, A.B. Boucherie, K. Brodzinski, R. Calaga, S.J. Calvo, E. Cano-Pleite, O. Capatina, F. Carra, L. Dassa, F. Eriksson, M. Garlasché, A. Krawczyk, R. Leuxe, P. Minginette, E. Montesinos, B. Prochal, M. Sosin, M. Therasse
    CERN, Geneva, Switzerland
  • T.J. Jones, N. Templeton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Krawczyk, B. Prochal
    IFJ-PAN, Kraków, Poland
  • S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Research supported by the HL-LHC project
Crab cavities are a key element to achieve the HL-LHC performance goals. There are two types of cavities Double Quarter Wave (DQW) for vertical crabbing, and Radiofrequency Dipole (RFD) for horizontal crabbing. Cavities are hosted in a cryomodule to provide optimal conditions for their operation at 2K while minimizing the external thermal loads and stray magnetic fields. One crab cryomodule contains more than thirteen thousand components and the assembly procedure for the first DQW prototype was carefully planned and executed. It was installed in the SPS accelerator at CERN in 2018 and successfully tested with proton beams. A review has thus been performed right after completion of the assembly in order to gather all the experience acquired and improve accordingly the design of the next generation of crab cryomodules. A second cryomodule with two RFD cavities is currently under production. This paper presents the lessons learnt from the first assembly and their implementation to the design of the future crab cryomodules.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP099  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP036 An Insight on the Thermal and Mechanical Numerical Evaluations for the High-Luminosity LHC Crab Cavities 929
 
  • E. Cano-Pleite, A. Amorim Carvalho, K. Artoos, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, M. Garlasché, R. Leuxe, E. Montesinos
    CERN, Meyrin, Switzerland
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • S. Verdú-Andrés
    BNL, Upton, New York, USA
 
  Funding: Research supported by the HL-LHC project
One of the key devices of the HL-LHC project are SRF crab cavities. A cryomodule with two Double Quarter Wave (DQW) crab cavities has been successfully fabricat-ed and tested with beam at CERN whereas the Radio Frequency Dipole (RFD) crab cavities are currently on its fabrication process. The paper provides an insight on the multiple calculations carried out to evaluate the thermal and mechanical performance of the DQW and RFD cavi-ties and its components. In some cases, the presence of RF fields inside the cavity volume requires the use of mul-tiphysics numerical models capable of coupling these fields with the thermal and mechanical domains. In fact, the RF field presents a strong dependency on the cavity shape, whereas the mechanical, thermal and electrical properties of the materials may substantially vary as a function of temperature, which in turn depends on the RF field. The results presented in this paper, using both cou-pled and uncoupled models, allowed elucidating the importance of physics coupling on the numerical evalua-tion of RF cavities and its components. Analyses were also of great support for the design evaluation and im-provement of future prototypes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP036  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)