

ernational Conference on RF Superconductivity Lanzhou China July 17-21, 2017

Alternative coating techniques and materials for SRF cavities

<u>G. Rosaz</u>¹, M. Arzeo², S. Aull², S. Calatroni³, K. Ilyina-Brunner¹, T. Richard¹, A. Sublet¹, M. Taborelli¹, W. Venturini-Delsolaro²

1: CERN: TE-VSC/SCC 2: CERN: BE-RF/SRF 3: CERN: TE-VSC/VSM

Guillaume.Rosaz@cern.ch

1. Context

2. Overview

3. @ CERN – HiPIMS and A15

4. Summary - Perspectives

1. Context

18/07/17

1.1 Coated SRF Cavities

- Thermal stability
 - No quench
 - Higher working temperature
- Low magnetic field sensitivity
- Low fabrication costs

FCC-WOW

Cross section of the quarter superconducting resonator

1.2 Coating Techniques

Direct Current Magnetron Sputtering

Adapted to elliptical cavities

Low working pressure (10⁻⁴ up to 10⁻² mbar) Kr or Ar as sputtering gas 10's W.cm⁻² High coating rate (up to 100's nm/min) "low temperature" coatings Cavity used as vacuum chamber

1.2 Coating Techniques

Biased Diode Sputtering

QWR type Limited available space Higher working pressures (10⁻² – 10⁻¹mbar) Ar or Kr as sputtering gas ~1W.cm⁻²

Cavity under UHV → Not UHV leak tight cavity High temperature reachable (~650°C) (outgassing, Nb mobility, adhesion)

1.2 Coating Techniques

Proven to be good at low field

Benvenuti C et al 2001 Physica C 351 421–8

1.3 Limitations

D. Tonini et al, Morphology of niobium films sputtered at different target-substrate angle, 11th workshop on RF superconductivity, THP11
C. Benvenuti et al, Production and test of 352 MHz Niobium Sputtered Reduced Beta cavities, 1997, SRF97D25

Which Solutions?

2. Overview

2.1 Energetic condensation

PROPOSAL: Use ionized Nb to coat cavities instead of neutrals. \rightarrow Coating conformality, density

HOW?

2.2 ECR @ Jlab (courtesy of A.M. Valente-Feliciano)

- Low R_{res} combined to mitigated Q-slope
- Good adhesion

CERN

What else has to be done?

- Pros
- Gasless
- No macroparticles
- Cons
- Scalability?

1: A. M. Valente-Feliciano, Supercond. Sci. Technol. 29 (2016) 113002

2: Aull S et al 2015 Proc. 17th Int. Conf. on RF Superconductivity (Whistler, BC, Canada, 13–18 September) TUBA03 494

2.2 ECR – Next steps

Scale-up to cavities

3 GHz Cavity with beam tubes: 5GHz frequency cut-off

Adjust coating geometry to allow RF fields to penetrate the cell and get adequate plasma conditions

2.3 – UHV Cathodic Arc

DC Supply (50 A)

 \odot

 \odot

Heated Cavity

Langner J et al 2006 Vacuum 80 1288–93

18/07/17

Pros High coating rates High ionization degree (+3)

Krishnan M et al 2012 Phys. Rev. Spec. Top. Accel. Beams 15 032001

Cons

Macroparticles formation Delamination Not yet satisfactory on cavities → Not technique related

Document reference

а

3.1 HiPIMS Setup

DCMS System already existing Pulsed power supplies (Huttinger-TRUMPF) DC Bias

Modification:

- Anodes implementation
 - Enables bias configuration

Typical parameters

Parameter	Typical value/range
Gas	Kr
Pressure	2.10 ⁻³ – 1.10 ⁻² mbar
Power (Avg)	1 kW
Peak Power	80 kW (1kW.cm ⁻²)
Peak Current	150 - 250 A (2-3A.cm ⁻²)
Pulse duration	50 - 200 μs
Pulse Frequency	20 - 500 Hz
Temperature	150°C

Nb cathode

1.3 GHz cavity

Nb cathode with permanent magnets inside and Nb anodes

17

3.2 HiPIMS results : Morphology

Samples - Coupons

Grounded HiPIMS = Grounded DCMS Bias compulsory to densify the layer

OV DCMS

m ESB Grid - 0.V I Probe - 274 pA WD - 5.2 mm Detector - InLens 29 Aug 2016 Alexander CERI EHT - 1.50 kV Mag = 47.28 KX 15:00:12 Lunt

3.4 HiPIMS results : Morphology

3.4 HiPIMS results : Morphology

3.4 HiPIMS results : Morphology

3.3 HiPIMS results : Frequency

• Samples – cavity replicates

Thickness profile obtained by XRF Lower frequencies lead to

- Lower coating rates
- Modified coating profile

3.3 HiPIMS results: Magnet

• Samples – cavity replicates

Thickness profile obtained by XRF Lower frequencies lead to

- Lower coating rates
- Modified coating profile

Possibility to tune the ion flux density Impact on the layer to be assessed

- Samples
- Cavity

3.3 HiPIMS results: Magnet

• Samples – cavity replicates

Thickness profile obtained by XRF Lower frequencies lead to

- Lower coating rates
- Modified coating profile

Possibility to tune the ion flux density Impact on the layer to be assessed

- Samples
- Cavity

IMPACT ON LAYER AND RF PERFORMANCES? COATINGS ON CAVITIES NEEDED

3.5 HiPIMS results: Cavities

High Bias does not give good results (gas implantation , stress...) Lower pressure tends to better performances (contamination, stress...) Q-slope looks mitigated vs DCMS coating Best HiPIMS : $R_{res} = 5.2 n\Omega$

3.5 HiPIMS results: Cavities

• 1.3 GHz Cu Cavities

High Bias does not give good results (gas implantation , stress...) Lower pressure tends to better performances (contamination, stress...) Q-slope looks mitigated vs DCMS coating Best HiPIMS : $R_{res} = 5.2 n\Omega$

K. Ilyina-Brunner

3.6 A15 Setup

DCMS System

- Heater integrated
- Single target Nb:Sn 3:1

UHV furnace

- Post coating annealing

Parameter	Typical value/range
Gas	Kr/Ar
Pressure	5.10 ⁻⁴ – 5.10 ⁻² mbar
Power (Avg)	200 W
Temperature	From 150°C to 700°C in-situ

3.6 XRD - Morphology

3.6 XRD - Morphology

after annealing

All "room temperature" samples are evincing cracks after annealing.

Now coating recipe to overcome this problem has been found !

3.6 High temperature coatings

CERI

3.6 High temperature coatings

3.6 T_C vs composition

3.7 T_C vs microstrain

XRD rietveld analysis

"Room-temperature" coatings+annealing

Micro-strain mitigation seems to be critical to ensure highest possible Tc

→ small-range order matters too
→ Diffusion driven process

4. Summary / Perspectives

1. ECR and HiPIMS have both shown promising SRF results

2. Work needed to stabilize / scale-up the processes

3. A15 onto copper: challenging but converging to promising recipes. Next step: RF

4. A15 scale-up promises new challenges

Acknowledgements

- UniGe for VSM/SQUID measurements (M. Bonura , C. Senatore)
- Surface treatment team (S. Forel, L. Viezzi, M. Thiebert, P. Maurin, F. Fesquet)
- Coatings support (W. Vollenberg)
- Cavities fabrication (V. Palmieri)

THANK YOU FOR YOUR ATTENTION

