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“The importance of the electron mean free path for 
superconducting radio-frequency cavities”

Journal of Applied Physics 121, 2017 – J. T. Maniscalco, D. Gonnella, M. Liepe



Impurity-Doping Observations
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• Classic observation: minimum in RBCS vs. mean free path
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• Recent observation: anti-Q-slope from impurity doping

Impurity-Doping Observations

7/17/17 James Maniscalco 3

standard Q-
slope

In EP cavity

stronger doping
⇓

stronger anti-
Q-slope



• Low-field minimum comes from BCS theory
• Recent theory offers explanation for anti-Q-slope

– A. Gurevich (ODU): current-induced smearing of 
energy gap causes field-dependent reduction in 
surface resistance

Impurity-Doping Observations
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Background: Gurevich Theory

• Strong RF magnetic fields excite screening currents on 
superconducting surface which modify density of 
states of quasiparticles (unpaired electrons)

• Decreases RS for sufficiently sharp gap peak
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Fig. 2,
Gurevich 2014

“Reduction of Dissipative 
Nonlinear Conductivity 

of Superconductors 
by Static and Microwave 

Magnetic Fields”

A. Gurevich, PRL 113, 
087001 (2014)

H = 0

H >> 0



Background: Gurevich Theory

• Doping connection: doping Nb sharpens gap peak?
– Early results indicated more uniform energy gap on surface, 

but need more systematic data
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“Effect of high-temperature 
heat treatments on the 
quality factor of a large-
grain superconducting 

radio-frequency niobium 
cavity”

P. Dhakal et al., PRST-AB 
16, 042001 (2013)

Blue: undoped Nb
Red: high-T doped Nb

Fig. 16,
Dhakal 2013



• Quasiparticle overheating

RF field

Background: Gurevich Theory
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Background: Gurevich Theory

• Quasiparticle overheating
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Background: Gurevich Theory

– Magnitude of RBCS reduction controlled by 
quasiparticle overheating
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Fig. 4a,
Gurevich 2014

no overheating

high overheating
Gurevich theory 

does not consider 
mean free path,

leaves overheating
as free parameter

re
la

ti
ve

q
p

co
n
d
u
ct

iv
it
y



Experimental Parameters

• 1.3 GHz Nitrogen-doped TESLA single-cell 
niobium cavities

• Prepared with varied doping recipes to achieve 
a range of electron mean free paths from 4 
nm to over 200 nm

• CW RF tests at Cornell
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RF Test Results and Analysis

• Extract mean free path, RBCS(H, T)
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RF Test Results and Analysis

• Fit Gurevich theory to experimental data
– α’ as free fitting parameter
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Theory needs expansion to 
predict outside dirty limit

Increasing mean free path, 
increasing α’

mfp = 4.5 nm mfp = 34 nm mfp = 213 nm



The Mean Free Path
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Overheating depends 
strongly on 

mean free path!

This is what connects 
impurity doping to 

observed strength of 
anti-Q-slope

stronger doping
⇓

lower mean free path
⇓

lower overheating
⇓

stronger anti-Q-slope



Optimal Doping Level

• Optimizing the mean free path
• Account for sensitivity of R0 to trapped flux
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At right:

RS = R0 + RBCS at 68 mT
(16 MV/m), 2K

LCLS-II spec gradient



Low-Temperature Doping

• New tests: Low-temperature impurity-doped 
1.3 GHz TESLA niobium cavities

• Simpler doping procedure – no post-doping 
chemical etching

• Different impurities – high levels of C, O

• CW RF tests at Cornell
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Low-Temperature Doping

• Similar RF performance to N-doped cavities
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Low-T doped 
single-cell cavity

Nitrogen-doped
single-cell cavity“Effects of Interstitial Oxygen 

and Carbon on Niobium 
Superconducting Cavities”,

Koufalis et al.,
arXiv:1612.08291



Low-Temperature Doping

• Fit using same procedure as before
– Single α’ for all temperatures
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Low-Temperature Doping

• Good agreement with N-doping model
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New results 
from

Low-T 
doping



Low-Temperature Doping

• Drastic differences in RF penetration layer
– How does this change the physics?
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Conclusions

• Theoretical link between doping level, mean 
free path, quasiparticle overheating and the 
anti-Q-slope

• Promising/interesting early results with 
low-T doping
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Thank you for your attention!



Backup: Terms and Equations
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Rs = R0 +RBCS

T = Telectron =  temperature of quasiparticles
T0 = cryogenic bath temperature

α’ = normalized overheating parameter
Y = electron-phonon energy transfer rate

κ = thermal conductivity
d = thickness of cavity wall

hK = Kapitza interface conductance

Pdiss = power dissipated in cavity walls



Backup: Cavity Preparations

• Nitrogen-doped 1.3 GHz TESLA single-cell 
niobium cavities
– Prepared with a range of electron mean free paths 

from 4 nm to over 200 nm
• 100 µm vertical electropolish (VEP) “reset”
• 800 ºC in vacuum, 3 h, “outgassing”
• 800-990 ºC in 4-8 Pa (30-60 mTorr) N2, 5-30 min
• 5-40 µm VEP to determine “doping level”, quantified by 

electron mean free path (deeper etch reveals cleaner layer)

• Low-T doping at 120-160º C
• chemical reset and outgassing bake phase
• 48 h bake with nitrogen gas, impurities at ppm level
• 48-168 h anneal in vacuum
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