Hydrogen and Hydride Precipitation in SRF Nb Revealed by Ex-Situ Metallographic Technique

- <u>Shreyas Balachandran</u>¹, Santosh Chetri¹, Pashupati Dhakal², David Larbalestier¹, Peter Lee¹
- 1. Applied Superconductivity Center, NHMFL, Florida State University, Tallahassee, FL 32310, USA
- 2. Jefferson Lab, SRF R&D, Newport News, VA 23606, USA

LORGO STOR

The support for this work at FSU was from US DOE Award # DE-SC0009960 and the State of Florida. Additional support for the National High Magnetic Field Laboratory facilities is from the NSF: NSF-DMR-1157490.

APPLIED SUPERCONDUCTIVITY CENTER NATIONAL HIGH MAGNETIC FIELD LABORATORY FLORIDA STATE UNIVERSITY

Outline of this talk

« Hydrides affect SRF performance

- Non-superconducting precipitates
- Microstructure hydride interactions can cause flux trapping
- ***** Technique used to introduce hydrogen and image hydride pits
 - Intentional hydrogen loading
 - Cooling profile for hydride precipitation
 - Imaging for analytical microscopy
- **Results and Discussion**
 - General hydride pit characteristics in polycrystalline Nb.
 - Hydride pit comparisons in Nb with and without N doping

« Summary and Conclusions

Motivation-Hydrides, adversely affect cavity performance.

1.5 GHz, 1.8 K, Saclay, 1992, Bonin, and Roth

18th International Conference on RF Superconductivity, Lanzhou

July 18, 2017

AR

3 / 30

Motivation-Hydrides, adversely affect cavity performance.

- Is the medium field Q slope caused by nano-hydrides?
 - A Romanenko, F Barkov, L D Cooley and A Grassellino, Supercond. Sci. Technol. 26 (2013) 035003 (5pp).
- Record accelerating gradients of 45MV/m have been attained in pure Nb. Repeatability?
- Dirty Nb (by doping or infusion) is pushing the limits of Nb....

July 18, 2017

30

A Grassellino , A Romanenko, et.al, Supercond. Sci. Technol. 26 (2013)

Does N doping provide an added benefit by preventing hydrides?

18th International Conference on RF Superconductivity, Lanzhou

Motivation- Microstructure hydride interactions can lead to DC flux trapping during cooling.

Are there microstructure correlations to hydride precipitation?

TUXBA05

18th International Conference on RF Superconductivity, Lanzhou

July 18, 2017

30

Preliminaries - Nb-H system: Hydrogen, and hydrides distort the Nb lattice

5 / 30

TUXBA05

18th International Conference on RF Superconductivity, Lanzhou

July 18, 2017

Methods: Surface hydrogen introduction and hydride precipitation

Methods: Surface hydrogen introduction and hydride precipitation – Ningxia sheet

Backscatter image reveals pits left over by hydride precipitation. Contrast due to strain around pits.

TUXBA05

18th International Conference on RF Superconductivity, Lanzhou

July 18, 2017

8 / 30

Result- Preferential segregation of hydride pits at GB's observed

- Pits are present in-grain and along GB's.
- * There is segregation along the GB, and a hydride free zone (HFZ).
- Hydride pit morphology depends on grain orientation.
- **«** Some grains have no hydrides.

Result- Hydride pit density is constant for a grain size greater than ${\sim}10\mu\text{m}$

10 / 30

July 18, 2017

18th International Conference on RF Superconductivity, Lanzhou

TUXBA05

Result- Hydride pit free zone (HFZ) determined by analytical microscopy.

BSE image

Average hydride pit diameter: 1500 ± 300 nm

Digitized image for image analysis (Image J macros)

Color coded plot of minimum distance between hydride pits and grain boundary

Result- Hydride pit free zone (HFZ) determined by analytical microscopy.

BSE image

Average hydride pit diameter: 1500 ± 300 nm

Digitized image for image analysis (Image J macros)

Min. Dist. from GB, µm Color coded plot of minimum distance between hydride pits and grain boundary

Summary

Hydride pits generated show a microstructure dependence

- Grain sizes less than 10 µm have very few hydrides.
- Hydride pits appear to be segregated at the GB.
- There is a hydride free zone around GB's with the average distance being 3μm.
- Characteristic features that could describe hydride pit behavior are:
 - Average hydride pit diameter size (nm), average hydride density (#/ μ m²), HFZ (μ m).

Experimental details: RRR> 250 SRF grade Nb drawn wires

Cu removal (1:10, HNO₃ and EP)

<mark>800°C/3h</mark> 52±42 μm 800°C, 2N6

Nitrides on wire surface after 800°C, 2N6

AB

13 / 30

- SRF grade RRR > 250; Nb wire E=4.2
- Typical grain curling in bcc metals observed

2N6-> 2 minute N_2 introduction at 25 mTorr, and 6 minute soak

TUXBA05

18th International Conference on RF Superconductivity, Lanzhou

July 18, 2017

Methods: Surface hydrogen loading and hydride precipitation

Result- 800°C/3h after cooling- Hydride pits observed throughout cross section

TUXBA05

18th International Conference on RF Superconductivity, Lanzhou

July 18, 2017

AGLAB

Result- 800°C/3h after cooling- Hydride pits observed throughout cross section

Result- 800°C/3h after cooling- Hydride pits observed throughout cross section

Result- 800°C/3h + 2N6 after cooling- Lesser number of hydrides in cross section

TUXBA05

18th International Conference on RF Superconductivity, Lanzhou

July 18, 2017

Result- 800°C/3h + 2N6 after cooling- Lesser number of hydrides in cross section

TUXBA05

18th International Conference on RF Superconductivity, Lanzhou

July 18, 2017

Result-Hydride pit density is reduced in N doped samples, close to the wire surface.

July 18, 2017

17

30

- Hydride pit density is uniform in the sample with no nitrogen doping.
- Hydride pit density is lesser within the first 50 µm of the N doped sample

Result- Hydride pit size is reduced in N doped samples, close to the wire surface

Hydride pit diameter within 100 μm x 100 μm from the boundary.

Average hydride pit size in:

- a) N doped Nb sample is 580 ± 350 nm,
- b) Nb sample with no doping is 750 ± 430 nm.

18 / 30

18th International Conference on RF Superconductivity, Lanzhou

July 18, 2017

Summary- Hydride pit characteristics vary depending on Nb microstructure and doping

Sample	Average grain size (μm)	Average hydride size (nm)	Average hydride density (#/μm ²)	HFZ (μm)	
Polycrystalline Ningxia sheet- As received.	37±21	1500 ± 300	0.06 ± 0.02	3	
Polycrystalline Nb wire (800C/3h)	52±42	750 ± 430	0.07 ± 0.04	1	
Polycrystalline Nb wire (800C/3h) + 8002N6	50 ± 34	580 ± 350	Varies		

Limited counting statistics – 100 μm x 100 μm area Distribution of hydride pits is non-uniform in N doped samples

18th International Conference on RF Superconductivity, Lanzhou

July 18, 2017

19

30

Discussion- Hydride pits as a tracker of interstitials and defects?

A. Pundt and R. Kirchheim, "Hydrogen in Metals: Microstructural Aspects", Annu. Rev. Mater. Res. 2006. 36:555–608,

- Trap sites for H in the low concentration range: interstitials, vacancies, dislocations, GB's, , and free surface...
- Can statistical analysis of hydride pits be a technique to relate microstructure with hydride precipitation?

Do a lack of hydride pits imply presence of interstitials?

Summary and Conclusions

- Hydride pit distribution is dependent on the Nb material and processing treatments.
- Clear evidence that hydride pit density, and numbers are reduced by N doping of SRF grade Nb.
- N doping could be effective in preventing hydride precipitation in SRF cavity Nb where hydrogen levels are much lower
- Observation of hydride pits in the range of 150-200nm, indicates initial hydrides formed could have similar dimensions.
- * The technique developed could be a low cost tool to investigate different Nb starting material including variations in: N doping, and surface treatments (EP, BCP, and heat treatments).

THBP002- Role of Nitrogen on Hydride Nucleation and Stability in Pure Nb by First Principle Calculations.

- THBP016- Impact of Heat Treatment and Doping on Flux trapping in SRF Grade Niobium Coupons.
- THBP026- Investigation of the Effect of Strategically Selected Grain Boundaries on Superconducting properties of High Purity Niobium.

30