

Magnetic Flux Expulsion Studies on Niobium

Sam Posen & Fermilab SRF Team SRF Conference 2017 18 July 2017

Live from Batavia, USA!

LCLS-II CAV0007 – fabricated and prepared by RI, TD material

LCLS-II CAV0019 – fabricated and prepared by RI, TD material

🛟 Fermilab

LCLS-II CAV0007 – fabricated and prepared by vendor B, TD material

LCLS-II CAV0019 – fabricated and prepared by vendor B, TD material

7 Fermilab

Cavity	Usable Gradient* [MV/m]	Q0 @ 16 MV/m (or useable gradient) 2 K		
CAV0008	20.5	2.0E+10		
CAV0003	21.0	2.5E+10		
CAV0006	21.0	2.0E+10		
CAV0007	21.0	2.2E+10		
CAV0016	18.2	1.8E+10		
CAV0013	16.5	2.0E+10		
CAV0011	20.5	2.3E+10		
CAV0015	21.0	2 3E+10		
Average	20.0	2.1E+10		
Total Voltage	166 MV			

Cavity	Usable Gradient* [MV/m]	Q0 @ 16 MV/m (or useable gradient) 2 K	
CAV0034	21.0	3.4E+10	
CAV0039	21.0	4.2E+10	
CAV0040	10.0	3.6E+10	
CAV0026	9.2	3.2E+10	
CAV0027	21.0	3.2E+10	
CAV0029	21.0	4.4E+10	
CAV0042	16.8	2.8E+10	
CAV0032	21.0	3 0E+10	
Average	17.6	3.5E+10	
Total Voltage	146 MV		

Fermilab CM-2 Cavities treated with baseline recipe

Fermilab CM-3 Treatment modified to improve flux expulsion

Fermilab

Total voltage Spec: 133 MV Q_0 Spec: 2.7x10¹⁰

Magnetic Flux Expulsion Background

Expulsion is an Important Factor in Flux Losses

- Determines what fraction of ambient flux becomes trapped
- Other factors:
 - Sensitivity to trapped flux

- Thermocurrents due to connections near cavity (e.g. He vessel)
- Thermocurrents due to bilayers (e.g. Nb₃Sn/Nb)

Expulsion is an Important Factor in Flux Losses

- Determines what fraction of ambient flux becomes trapped
- Other factors:

Measuring Flux Expulsion

A. Romanenko et al., Appl. Phys. Lett. 105, 234103 (2014) A. Romanenko et al., J. Appl. Phys. 115, 184903 (2014)

2.0

- An axial magnetic field is applied during cooldown. Fluxgate magnetometers at the equator measured the magnetic field before B_{NC} and after B_{SC} superconducting transition.
 - Complete trapping: $B_{SC}/B_{NC} = 1$
 - Complete expulsion: $B_{SC}/B_{NC} \sim 1.7$

Magnetic Flux Expulsion Results of Experiments to Probe the Physics of Flux Expulsion

2) Surface treatments have insignificant impact

2) Surface treatments have insignificant impact

3) Some niobium production runs have very poor expulsion – even with large ΔT

- Seems to be a great deal of variability in as-received material
- Variability from batches even within a single vendor

3) Some niobium production runs have very poor expulsion – even with large ΔT

- Seems to be a great deal of variability in as-received material
- Variability from batches even within a single vendor

4) High temperature treatment can make poorly expelling material expel well even with small ΔT

900 C – 1000 C furnace treatment improves expulsion

15 7/17/2017 Sam Posen

16 7/17/2017 Sam Posen

5) Improvement in expulsion is correlated with grain growth

5) Improvement in expulsion is correlated with grain growth

Why is 800 C enough to grow giant grains in some Nb but 1000 C required for others?

5) Improvement in expulsion is correlated with grain growth

6) Heavy deformation degrades expulsion behavior

🚰 Fermilab

Model for Flux Expulsion Consistent with 1)-6) Above

Thermal gradient, *VT*

- What types of pinning sites are the dominant mechanism for trapping?
- Grain/crystal boundaries? Intragrain dislocations from deformation?

Details in talk by Mattia Checchin

Magnetic Flux Expulsion Material for LCLS-II

7/17/2017

7/17/2017

LCLS-II - Production

- See below difference between flux trapping in baseline 800 C recipe compared to 900 C modification
- These are production 9-cell cavities that are now in cryomodules for LCLS-II

LCLS-II Production Cavity Q₀ Before/After Recipe Change

Cavity Q0 Performance in VT

Cavity	Usable Gradient* [MV/m]	Q0 @ 16 MV/m (or useable gradient) 2 K		
CAV0008	20.5	2.0E+10		
CAV0003	21.0	2.5E+10		
CAV0006	21.0	2.0E+10		
CAV0007	21.0	2.2E+10		
CAV0016	18.2	1.8E+10		
CAV0013	16.5	2.0E+10		
CAV0011	20.5	2.3E+10		
CAV0015	21.0	2.3E+10		
Average	20.0	2.1E+10		
Total Voltage	166 MV			

29

Cavity	Usable Gradient* [MV/m]	Q0 @ 16 MV/m (or useable gradient) 2 K		
CAV0034	21.0	3.4E+10		
CAV0039	21.0	4.2E+10		
CAV0040	10.0	3.6E+10		
CAV0026	9.2	3.2E+10		
CAV0027	21.0	3.2E+10		
CAV0029	21.0	4.4E+10		
CAV0042	16.8	2.8E+10		
CAV0032	21.0	3 0E+10		
Average	17.6	3.5E+10		
Total Voltage	146.4			

	Fermilab CM-2 Baseline recipe: 800 C degas, 140 µm bulk EP Fast cooldown			Fermilab CM-3 Modified recipe: 900 C degas, 200 μm bulk EP Fast cooldown		
	Total voltage Spec: 133 N		Q ₀ Spec: 2.7x10 ¹⁰		* -	
7/17/2017 Sam Posen		See Genfa Wu's talk on Friday		av av		

Magnetic Flux Expulsion Additional Experiments

Future High Q₀ Cavity Production

- The activity to 'cure' the flux expulsion in LCLS-II cavities put a strain on the project
- For future procurement of niobium for high Q₀ cavity production, it is crucial to understand how to improve specifications
- In parallel: experiments to further develop understanding of physical mechanisms that control trapping/expulsion during cooldown

7/17/2017

7/17/2017

32

Acknowledgements

- Intellectual and experimental contributions to this experimental endeavor from Sebastian Aderhold, Mattia Checchin, Curtis Crawford, Anna Grassellino, Martina Martinello, Alex Melnychuk, Hasan Padamsee, Roman Pilipenko, Alexandr Romanenko, Dmitri Sergatskov, Yulia Trenikhina
- Special thanks to Fermilab VTS teams
- Special thanks to LCLS-II, Jefferson Lab, SLAC for data and niobium samples relevant to LCLS-II

7/17/2017

Summary

- Flux expulsion experiment handbook:
- 1. Large thermal gradients at T_c promote expulsion of flux
- 2. Surface treatments have insignificant impact
- 3. Some niobium production runs have very poor expulsion (even with large ΔT)
- 4. High temperature treatment can make poorly expelling material expel well (even with small ΔT)
- 5. Improvement in expulsion is correlated with grain growth
- 6. Heavy deformation degrades expulsion behavior
- Experiments continue to boost understanding of flux expulsion physics and improve material specifications for future projects

🔀 Fermilab