18th International Conference on RF Superconductivity

Review of heat treatments for low beta cavities : what's so different from elliptical cavities

D. Longuevergne

SRF2017 - July 2017 - Lanzhou

OUTLINE

- Introduction
- Heat treatments
 - Hydrogen degassing
 - Low temperature baking
 - Perspectives on nitrogen doping... is there one ?
- Conclusion

SPECIAL THANKS TO:

- Z. Conway, ANL
- W.Yue, IMP
- E. Cenni, CEA
- Z.Yao, TRIUMF
- R. Laxdal, TRIUMF

ACCELERATING STRUCTURES

ACCELERATING STRUCTURES

 $\beta_0 = 0.041$ $\beta_0 = 0.085$ Quarter-Wave Resonato

80.5 MHz

HIHIHIHI

ACCELERATING STRUCTURES

MYRRHA β=0.37, 352 MHz

 $\beta_0 = 0.041$ $\beta_0 = 0.085$ Quarter-Wave Resonato

80.5 MHz

ACCELERATING STRUCTURES

MYRRHA β=0.37, 352 MHz

OUTLINE

- Introduction
- Heat treatments
 - Hydrogen degassing
 - Low temperature baking
 - Perspectives on nitrogen doping... is there one ?
- Conclusion

HYDROGEN DEGASSING history

- Aims at degassing hydrogen out of Niobium
 - Avoids Q-disease and irreversible degradation due to Q-disease
 - Decreases residual resistance and Q-slope
 - Releases mechanical stresses, recristalization
- But:
 - Require expensive dedicated furnace
 - Pollution of surface
 - Re-absorbtion of residual gas because oxide layer has been dissolved
 - Post chemical etching « required » to remove contaminated layer

« Q degradation of niobium cavities due to Hydrogen contamination », B. Bonin and R.W. Röth, Proceedings of the 5th SRF workshop, Hamburg, Germany, 1991

HYDROGEN DEGASSING

▶ 1.3 GHz elliptical cavity

- Compulsory Irreversible degradation observed.
- Done in standard preparation
- Done with bare cavity
- Typically at 800°C during 2-3h.

Temperature limitation to limit recristalization and softening

Low beta resonators

FRIB, C-ADS, IFMIF).

- Not compulsory for QWR up to 170 MHz. Accelerators with non degassed cavities (ISAC2, ALPI, Saraf, Spiral2). Accelerators with degassed cavities (ATLAS,
- Looks compulsory for Spoke resonators at 352 MHz.

 Irreversible degradation observed in VT
- Done with/without dressed cavity
- Typically at 600°C 650°C during 10h.

 Temperature limitation due to brazed stainless steel parts

Hydrogen degassing at IMP: Courtesy of W.Yue

Hydrogen degassing at ANL : Courtesy of Z. Conway

Results for 345 MHz Beta = 0.63 Triple Spoke Resonator After Hydrogen Degassing, Performance Indicated that Cavities Should be Operated at 2 Kelvin

Argonne 📤

Hydrogen degassing at IPNO:

- ✓ Material : Bulk Niobium
- $\checkmark \beta = 0.5$
- $✓ F_0 = 352 \text{ MHz}$
- ✓ T:2K
- ✓ Eacc : 9 MV/m
- ✓ Bpk/Eacc = 6.9 mT/MV/m
- \checkmark Epk/Eacc = 4.3
- $\sqrt{r/Q} = 426$
- ✓ G = 130

- ✓ Material : Bulk Niobium
- ✓ $\beta = 0.37$
- $✓ F_0 = 352 \text{ MHz}$
- ✓ T:2K
- ✓ Eacc : 6.4 MV/m
- ✓ Bpk/Eacc = 7.3 mT/MV/m
- \checkmark Epk/Eacc = 4.3
- $\sqrt{r/Q} = 217$
- $\sqrt{G} = 109$

Furnace commissioned in 2016

Hydrogen degassing at IPNO:

Furnace commissioned in 2016

- ✓ Material : Bulk Niobium
- ✓ $\beta = 0.67$
- $✓ F_0 = 704 \text{ MHz}$
- ✓ T:2K
- \checkmark Bpk/Eacc = 4.8 mT/MV/m
- \checkmark Epk/Eacc = 3.8
- √G = 197

Treated at Zanon facility

COURTESY OF E. CENNI, CEA

- FRIB example after degassing
- Unfortunately no data before hydrogen degassing for comparison

K. Saito, February 2017 TTC201702

D. Longuevergne, SRF2017, Lanzhou, 17th-21st July 2017

- Degassing with Niobium caps very interesting
 - No post etching required
 - Allow alternative treatment like N2 infusion
- ▶ Residual resistance is decreased → No hydrogen precipitation
- Linear dependence of Q-slope is eliminated
 - → Disparition of Josephson weak links [*]
- ▶ BCS resistance is decreased as well \rightarrow « doping of Niobium », RRR \downarrow
- Magnetic sensitivity is decreased
 - → Observed on elliptical cavities
 - → And also on Spoke cavities at 352 MHz

$$R_{BCS} = \frac{A \cdot \omega^2}{T} \cdot \exp\left(\frac{-\Delta}{k_B \cdot T}\right)$$

OUTLINE

- Introduction
- Heat treatments
 - Hydrogen degassing
 - Low temperature baking
 - Perspectives on nitrogen doping... is there one ?
- Conclusion

Low temperature baking for elliptical cavities

- Most of labs converged toward 120°C during 48h
- Aims at removing the high field Q-slope
 - First reported by B. Visentin in 1998.
 - Decreases BCS resistance
 - Decreases (for BCP cavity) or eliminates (for EP cavity) the high field Q-slope
 - Could be used to accelerate drying of cavity
- But:
 - Increases residual resistance

«Improvements of superconducting cavity performances at high accelerating gradients », B. Visentin et al., Proc EPAC 1998, p. 1885

Low temperature baking for elliptical cavities

Most of labs converged toward 120°C during 48h

accelerating gradients », B. Visentin et al., Proc EPAC 1998, p. 1885

Baking for RISP:

- 81.25MHz QWR and 162.5MHz HWR designed by RISP.
- Cavity treatments
 - 120μm BCP (+15μm for HWR)
 - HPR
 - 48hr 120°C bake
- Cavities were tested before and after bake.

	QWR	HWR	Unit
Frequenc y	81.25	162.5	MHz
β	0.047	0.12	1
$\mathbf{L}_{\mathrm{eff}}$ = $\beta\lambda$	0.173	0.221	m
$\mathbf{E}_{\mathrm{peak}}/\mathbf{E}_{\mathrm{acc}}$	5.3	5.6	1
B _{peak} /E _{acc}	9.5	8.2	mT/MV/ m
G	21	40	Ω
U/E _{acc} ²	0.126	0.159	J/(MV/m)

COURTESY OF Z. Yao

▶ Baking for RISP : 81 MHz QWR

Baking for RISP: 162 MHz HWR

Baking at 120°C during 48h at FRIB: 80.5 MHz QWR

Presented at TTC meeting by J. Popielarski, december 2011 D. Longuevergne, SRF201

D. Longuevergne, SRF2017, Lanzhou, 17th-21st July 2017

▶ Baking at I20°C at IPNO:88 MHz QWR

- ▶ Residual resistance is increased → diffusion of surface impurities
- ▶ BCS resistance is decreased → reduction of electron mean free path
- ▶ 4.2 K Q-slope is decreased → origin of Q-slope is BCS
- Difference between elliptical and low beta :
 - For elliptical cavities: baking affects only the high field Q-slope (>20 MV/m)
 - For low beta cavities: Q-slope impacted at low field

Cavity	Frequency	Pre-treatment	Residual resistance	BCS resistance
QWR RISP	81.25 MHz	ВСР	↑	\
HWR RISP	162.5 MHz	ВСР	↑	\
QWR ReA3	80.5 MHz	BCP + 600°C degassing	↓??	\
QWR Spiral2	88 MHz	ВСР	↑	\

OUTLINE

- Introduction
- Heat treatments
 - Hydrogen degassing
 - Low temperature baking
 - Perspectives on nitrogen doping... is there one ?
- Conclusion

N₂ « doping » for elliptical cavities

- Nitrogen doping reported in 2013 at fermilab
 - Cavity exposed to nitrogen gas at the end of thermal cycle at 800° C
 - Small chemical etching required to remove over-doped layer
- Positive effects :
 - Decrease of BCS resistance
 - **BCS** resistance is improving with accelerating gradient (anti Q-slope)
- Negative effects :
 - Quenching gradient is reduced
 - Magnetic sensitivity is drastically increased
- Heat treatment (300° C to 800° C) with N₂/Ar refill already tried by B. Visentin in 2001
 - Anomalously low BCS resistance observed. No mention of anti Q-slope
- ▶ G. Ciovatti reported nitridization treatment at 400° C following a 800° C treatment in 2010
 - Improvement of residual resistance

nitrogen doping

50

Perspectives

N₂ « doping » for elliptical cavities

N₂ « doping » for low beta

Only one example at 650 MHz

CAVITY PROCESSING AND PREPARATION OF 650 MHz ELLIPTICAL CELL CAVITIES FOR PIP-II*, A. M. Rowe et al., Proceedings of LINAC2016, East Lansing, US.

N₂ « doping » for low beta

- Nitrogen doping keeps residual resistance low and decreases BCS resistance
- To be beneficial residual resistance has to be low compaired to BCS resistance
- What does that mean for low beta cavities :
 - If operated at 2K
 - No point to dope up to 500 MHz, as BCS resistance is low and MFQS is negligeable
 - If operated at 4.2K
 - Worth doing it especially if Q-slope is from BCS and not residual resistance
- Could nitrogen doping allow 4.2K operation of Spoke cavities at 352 MHz?

R_{BCS} (n Ω)	4.2K	2K	1.8K	I.5K
1300 MHz	585	15	6.5	1.2
700 MHz	174	4.3	1.9	0.35
352 MHz	44	- 1	0.5	0.09
176 MHz		0.3	0.1	0.02
88 MHz	3	0.07	0.03	0.006

D. Longuevergne, SRF20

CONCLUSION

	I.3 GHz Elliptical	Observed improvements	Low beta cavities
Hydrogen degassing	 Compulsory Done without tank Done at 800°C Done during 3h 	 Improvement of Residual Improvement of BCS Improvement of Q-slope Q-disease disappears 	 Not compulsory below 300 MHz Done with/without tank Brazed parts → done at 600°C Done during 10h
120°C baking	Done during 48hHot air/nitrogen blown around cavity	 Improvement of BCS Degradation of Residual Improves Improves	 Done during 48h Hot air blown in helium tank Heating wires
Nitrogen doping		 Improvement of BCS resistance Residual resistance stays constant 	 Tried on 650 MHz only Will be tried on Spoke at 352 MHz
		- Anti Q No anti slope Q-slope	

THANKS A LOT FOR YOUR ATTENTION

AND MANY THANKS FOR PROVIDING MATERIAL TO:

- Zack Conway, ANL
- Zhongyuan Yao, TRIUMF/RISP
- Yue Weiming, IMP
- Enrico Cenni, CEA

THE BCS RESISTANCE

$$R_{BCS} = \frac{8 \cdot 10^{-5}}{T} \cdot f^2 \cdot \exp\left(-\frac{1.83 \cdot Tc}{T}\right)$$

R_{BCS} (n Ω)	4.2K	2K	1.8K	I.5K
1300 MHz	585	15	6.5	1.2
700 MHz	174	4.3	1.9	0.35
352 MHz	44	ı	0.5	0.09
176 MHz	11	0.3	0.1	0.02
88 MHz	3	0.07	0.03	0.006

Cavity	Frequency	Residual (nΩ)		$f A$ (10 ⁻⁵ n Ω K/s ⁻²)	
		Before HT	After HT	Before HT	After HT
QWR FRIB	80.5 MHz	X	1.5	X	7
Spoke ANL	345 MHz	6.5	4.5	7	6
Spoke IPNO	352 MHz	3.2	I.3 (no BCP)	9.5	8
Elliptical ESS	704 MHz	150	6	15	12.5
Elliptical KEK [**]	I.3 GHz	60	10	X	X

[*]: « Additional losses in high purity niobium cavities related to slow cooldown and hydrogen segregation », J. Halbritter et al., Proceedings of the 6th SRF workshop, Newport News, USA, 1993

FIELD DISTRIBUTION

Field distribution very different depending on the geometry

Niobium samples have been installed in cavity

- SIMS (Secondary Ion Mass Spectrometer) analysis to know what is on the surface after heat treatment
 - Compact SIMS from Hiden Analytical

A cavity not shielded during heat treatment:

A cavity not shielded during heat treatment:

A cavity shielded during heat treatment:

A cavity shielded during heat treatment :

How to compare elliptical and low beta

•	eters
	rame

Cavity type	β	T° (K)	G (Ω)	Qo at I nΩ res	F (MHz)	Eacc (MV/m)	Bpk/Eacc (mT/MV/m)
QWR (FRIB)	0.041	2	15	1.4 ^E 10	80.5	5.3 (54.6)	10.3
QWR (SPIRAL2)	0.12	4.2	33	8.2 ^E 9	88	6.5 (61.7)	9.5
HWR (RISP)	0.12	2	40	3.2 ^E 10	162	5.9 (48.4)	8.2
HWR (FRIB)	0.53	2	107	5.3 ^E 10	322	7.5 (63)	8.4
SPOKE (ESS)	0.5	2	133	6 ^E 10	352	9 (63)	7
Elliptical (ESS)	0.67	2	197	3.4 ^E 10	704	16.7 (83.5)	4.8
Elliptical (XFEL)	I	2	271	1.5 ^E 10	1300	23.6 (99)	4.2

D. Longuevergne, SRF2017, Lanzhou, 17th-21st July 2017

At CERN

At FERMILAB

