Transition Edge Sensors for quench localization in SRF cavity testing

Hernán Furci hernan.furci@cern.ch
Giovanna Vandoni, Torsten Koettig
Zsolt Ferenc Kovács, Tobias Stegmaier
SRF2017 – Lanzhou, China – July 2017
Presentation of our team

Giovanna Vandoni
- BE-RF
- Senior Scientist
- SRF activities coordinator

Torsten Koettig
- TE-CRG-CI
- Senior Cryogenics Scientist
- Cryolab R&D Coordinator

Hernán Furci
- BE-RF-SRF
- Senior Fellow
- Cryogenics Scientist
- R&D project responsible

Tobias Stegmaier
- BE-RF-SRF
- Technical Student
- Masters thesis on Cryogenic experimental techniques for SRF

Zsolt Kovàcs
- BE-RF-SRF
- Technical Student
- Finished his bachelor in Material Science with thesis in development of TES films

Project started in March 2016
Quench localization techniques
Quench localization

Future accelerators
- Need of testing superconducting cavities of variable size and geometry.

QUENCH: limits performance
- Where did the quench start?
- Localized? Magnetic?
- What kind of defect induced the quench?
- Can the problem be corrected?

Contact thermometry
- Placing temperature sensors on the cavity walls
- Requires individual preparation of each cavity

Non-contact thermometry
- Allows systematic and versatile testing of diverse cavities
- Technique based on superfluid helium second sound

Source: https://www.classe.cornell.edu/Research/SPF/SrfCavitiesAPrimerThree.html
Non-contact thermal mapping
(for He-II cooled cavities)

One of He-II many outstanding properties is second sound: temperature-entropy wave.

This wave is originated by a transient heat flux on a wall in contact with the fluid.

A quenching surface produces second sound!!!

Measuring the difference in time of flight to many sensors, the origin of the wave can be trilaterated (GPS-like).
Second Sound in He-II and its detection
He-II and second sound physics

n: normal component particles
s: superfluid component particles

Second sound detection

Oscillating SuperLeak Transducers (OST)

- Sensing of the relative movement of the two components

Thermometry

- Measurement of the temperature variation with fast response, highly sensitive thermometers
- Commercial sensors like Cernox bare chip sensors

Source:
Lakeshore website

Image sources:
Transition Edge Sensors

Bolometers: tiny and fast temperature variations (∼1 mK, sub-ms range)

Based on the (gradual) SC to NC transition of a thin film alloy

Only sensitive in the transition range

Transition range ‘tuned’ with a bias current

Based on the (gradual) SC to NC transition of a thin film alloy

Only sensitive in the transition range

Transition range ‘tuned’ with a bias current

SC-region

NC-region

R

T

I=const

Transition Edge

Bolometers: tiny and fast temperature variations (∼1 mK, sub-ms range)

Based on the (gradual) SC to NC transition of a thin film alloy

Only sensitive in the transition range

Transition range ‘tuned’ with a bias current

SC-region

NC-region

R

T

I=const

Transition Edge
Transition Edge Sensors

Bolometers: tiny and fast temperature variations (≈1 mK, sub-ms range)

Based on the (gradual) SC to NC transition of a thin film alloy

Only sensitive in the transition range

Transition range ‘tuned’ with a bias current

Evaporated Leads Sensor Stripes Quartzglass Plate

Soldered Junctions for Supply Lines

Fig. 1. Sixfold probe chip for second-sound measurement.

Transition Edge Sensors

2"nd sound detection, Au (20 nm) – Sn (100 nm) thin film alloys are a proven material.

Source: H. Borner, Experimental Investigations on Fast Gold-Tin Metal Film Second-Sound Detectors and Their Application
Advantages of TES to OST

<table>
<thead>
<tr>
<th>Electronics</th>
<th>• Simpler: 4-wire measurement is enough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space resolution</td>
<td>• One can fabricate them practically as small as desired</td>
</tr>
<tr>
<td>Thermometry</td>
<td>• They could provide information on the quench heat flux</td>
</tr>
<tr>
<td>Signal</td>
<td>• Not polluted with the mechanical oscillations of the membrane</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>• Can all the parameters involved in the fabrication process be controlled?</td>
</tr>
</tbody>
</table>
Project Objectives

- Establish an in-house production method of TES at CERN → appropriation of the technology
- Produce prototypes of TES
- Cryogenic testing of TES at the Cryolab at CERN
 - Characterisation of the SC transitions
 - Second sound detection by TES
- Deliver a TES sensing device
- Design a large scale TES thermal mapping system
- Validate TES quench localization on an SRF quenching system
Fabricating TES Prototypes in Au-Sn
Fabrication process

Not available commercially – In-house development
Need of an easy-going process to fabricate the TES
We used very up-to-date microfabrication clean room of CMi/EPFL

Drawing of the sensors
• On any CAD program
• Sensor array on standard wafer (10 cm diameter)

Process flow
• Automatized photolithography
• Leads and strips of the same material

Cabling
• Soldering with Indium
• Twisted 4-wires, by hand and without heat

<table>
<thead>
<tr>
<th>Process description</th>
<th>Cross-section after process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate: Borofloat 33</td>
<td></td>
</tr>
<tr>
<td>Coating – positive resist</td>
<td></td>
</tr>
<tr>
<td>Machine: ACS 200</td>
<td></td>
</tr>
<tr>
<td>LASER Writing</td>
<td></td>
</tr>
<tr>
<td>Machine: VPG 200</td>
<td></td>
</tr>
<tr>
<td>Developing</td>
<td></td>
</tr>
<tr>
<td>Machine: ACS 200</td>
<td></td>
</tr>
<tr>
<td>Metal Evaporation</td>
<td></td>
</tr>
<tr>
<td>Metals: Au-Sn</td>
<td></td>
</tr>
<tr>
<td>Lift-off</td>
<td></td>
</tr>
</tbody>
</table>
Prototype wafer design

Strips
- 30 µm wide
- Variable length (1 to 7 mm)
- Meandering design
- Sensing area ≈ 1 mm²

Leads
- Oriented for cabling
- Big enough for cabling
- Same material as sensor (low J \(\rightarrow \) SC always)
- Pads for Indium cold weld or pressed contact
Fabrication results

After laser writing and development

1mm

After metallization and lift-off

1mm

Sensor cabling

Instrumented wafer
4 wire measurement configuration
Indium soldering
The bright structures have a much higher content of Sn (AuSn$_4$ or Sn) than the dark background (AuSn$_2$)
Cryogenic testing
Testing of TES at the Cryolab

Helium p-T curve is the T standard (IST90) in the LHe range
TES Characterization

Pressure steps: 750 to 3150 Pa (1.6 to 2.0 K)

Current sweeps: 0 to 1.7 mA

Voltage recording => Resistance

Sensor strip
20 nm Au – 100 nm Sn
Second sound measurements with TES

- Pulses by resistive heaters
- Different distances
- Sensors biased at constant current

The signal was measured WITHOUT any electronic treatment (20 kHz sampling rate on NI compact DAQ)
Second sound measurements with TES

Pulses by resistive heaters
Different distances
Sensors biased at constant current

The second sound signal is clearly identified and the velocity value corresponds to literature.

The second sound signal is clearly identified and the velocity value corresponds to literature.

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$

270 μV 2nd S. signal

Heat flux: $1.40 \pm 0.07 \, W/m^2$
Distance $\sim 50 \, mm$

$T = 1.6 \, K$
$I = 0.9 \, mA$
Further studies on TES thin film

<table>
<thead>
<tr>
<th>Variation of composition and its impact of TES quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other material combinations</td>
</tr>
<tr>
<td>Reproducibility</td>
</tr>
<tr>
<td>Effect of adhesion-improving pre-layer on the TES performance</td>
</tr>
</tbody>
</table>
Next steps in R&D

Comparative study TES-OST

Fully characterise the two types of sensors
• in a common set-up
• in the same conditions

Appreciate differences in…
• Angular response
• Effect of distance from the source
• Response to source intensity
• Time response features

Assess the advantages and drawbacks of each of them

Second sound 3D propagation study

Spatial structure of a second sound wave from planar heater
• Modelling
• Experimentally
Towards Thermal Mapping Instruments
TES camera array

A compact multi-sensor device of sufficient size to do thermal mapping with. A network of independent sensors is proposed. The robustness is provided by a GFE frame. The connection is simplified with spring connectors. The fragility of the film needs to be dealt with, specially at electrodes.
TES camera array: electrodes

More resistant electrodes can be obtained with a thin film of Ti and Au: we tested 20 nm – 80 nm thickness. The adhesion is sufficient.

Two photolithography processes: one for electrodes; one for sensors. Micrometric alignment performed for the second laser writing process.
TES camera array: electrodes

More resistant electrodes can be obtained with a thin film of Ti and Au: we tested 20 nm – 80 nm thickness. The adhesion is sufficient.

Two photolithography processes: one for electrodes; one for sensors. Micrometric alignment performed for the second laser writing process.
TES camera array: prototype
Stand-alone TES chips

Wafers have already been produced to test the method

- Pre-diced cutting lines
- Thicker coating
- Laser more intense
- Careful manipulation

The results is satisfying

- Good geometrical quality
- Easy to separate
Stand-alone TES chips

Pre-machined wafer
Stand-alone TES chips
Stand-alone TES chips

Pre-machined wafer
Towards the validation of TES as thermal mapping system
Very recently dressed CRAB cavity with HOMS tested at SM18

It was an opportunity to start commissioning TES as a quench localisation system at SM18

Test were done with OST’s simultaneously, but no quench was detected at any HOMS
TES CRAB Cavities HOM - quench test

Very recently dressed CRAB cavity with HOMS tested at SM18

It was an opportunity to start commissioning TES as a quench localisation system at SM18

Test were done with OST’s simultaneously, but no quench was detected at any HOMS
Bare cavity quench test with TES

Test the TES as a quench localisation system on a bare cavity

Current bare CRAB PoP cavity test is an opportunity

Alternative: Induce quench at known location on a cavity (heater or intentional surface defect) or simply test with a known bad-performing cavity
Bare cavity quench test with TES

Test the TES as a quench localisation system on a bare cavity

Current bare CRAB PoP cavity test is an opportunity

Alternative: Induce quench at known location on a cavity (heater or intentional surface defect) or simply test with a known bad-performing cavity
Bare cavity quench test with TES

- Test the TES as a quench localisation system on a bare cavity

- Current bare CRAB PoP cavity test is an opportunity

- Alternative: Induce quench at known location on a cavity (heater or intentional surface defect) or simply test with a known bad-performing cavity
To summarize...
Conclusions on TES advances

- TES as second sound detectors have been produced from Au-Sn thin films
- The sensors were tested and satisfyingly detect second sound waves
- Effects of composition, process flow parameters and adhesive layers have been/are being studied
- A robust camera-like device has been designed, fabricated and incorporated to SM18 test facility
- Next tests will allow to validate TES as a thermal mapping instrument and to compare their performance with that of OSTs
- TES wafers as quench localization instruments are much more economic than a similar array of Cernox thermometers (when the technique is mastered and in relatively big production lots)
Acknowledgments

Cryolab

Technicians Collaboration

Infrastructure Helium

G. Rosaz, Th. Schneider, M. van Stenis

Thin films consulting

Thin films tests

A. Mapelli, J. Dorsaz and G. Corradini

Microfabrication consulting

CMi EPFL

A. Lunt, J. Busom Descarrega, F. Leaux

Microscopic analysis

SEM, SESI, ESB, EDX, FIB, etc.

A. Rijllart, E. Michel, P.

DAQ advice

LabVIEW support