

Canada's national laboratory for particle and nuclear physics and accelerator-based science

## DESIGN AND FABRICATION OF BALLOON SINGLE SPOKE RESONATOR

Z. Yao, R.E. Laxdal, B. Matheson, B.S. Waraich, V. Zvyagintsev, TRIUMF, Canada July 20, 2017



RF Superconductivity Lanzhou China July 17-21, 2017







- Balloon Concept
- RISP SSR1 Cavity
- Cavity Fabrication
- Frequency Control (RF Stack-up)
- Summary





# **BALLOON VARIANT**





### MULTIPACTING IN SPOKE CAVITIES



#### 325MHz beta=0.22 SSR1 L. Ristori, TTC2016







### MULTIPACTING IN SPOKE CAVITIES





#### 325MHz beta=0.22 SSR1 L. Ristori, TTC2016



Pillbox









### MULTIPACTING IN SPOKE CAVITIES





Spoke Cavity

























Z.YAO, Balloon Single Spoke Resonator, SRF2017, China



# **RISP SSR1 CAVITY**



## **TRIUMF**

### **RISP SSR1 CAVITY**





• TRIUMF designed, is fabricating, processing, and testing 2 balloon variant prototype cavities of RISP SSR1.

| RISP SSR1 Specifications |                    |  |  |  |
|--------------------------|--------------------|--|--|--|
| Operating frequency      | 325 MHz            |  |  |  |
| Geometry β               | γβ 0.30            |  |  |  |
| Operating temperature    | <b>2K</b>          |  |  |  |
| Q <sub>0</sub>           | >5X10 <sup>9</sup> |  |  |  |
| Epeak                    | 35 MV/m            |  |  |  |
| V <sub>acc</sub>         | >2.5 MV            |  |  |  |
| df/dp                    | <10 Hz/mbar        |  |  |  |
| Frequency tuning range   | ±100 kHz           |  |  |  |
| Q <sub>ext</sub>         | 8X10 <sup>6</sup>  |  |  |  |
| RF bandwidth             | 40 Hz              |  |  |  |
| Beam aperture            | 50 mm              |  |  |  |
| Pressure envelop at 300K | 2 bar              |  |  |  |
| Pressure envelop at 2K   | 5 bar              |  |  |  |





E-Field



| Design Parameters                   |                |  |  |  |
|-------------------------------------|----------------|--|--|--|
| Frequency                           | 325 MHz        |  |  |  |
| Geometry β                          | 0.30           |  |  |  |
| Geometry factor                     | 93 Ω           |  |  |  |
| R/Q                                 | 233 Ω          |  |  |  |
| E <sub>peak</sub> /E <sub>acc</sub> | 3.84           |  |  |  |
| $B_{peak}/E_{acc}$                  | 6.07 mT/(Mv/m) |  |  |  |
| Operational Parameters              |                |  |  |  |
| E <sub>peak</sub>                   | ak 35MV/m      |  |  |  |
| E <sub>acc</sub>                    | 9.11MV/m       |  |  |  |
| V <sub>acc</sub>                    | 2.52MV         |  |  |  |
| B <sub>peak</sub>                   | 55.3mT         |  |  |  |
| U                                   | 13.4J          |  |  |  |



### **RF DESIGN AND MULTIPACTING**





### **MECHANICAL DESIGN**

- Comply ASME guidelines based on the knowledge of the material properties and FEA analysis
  - To reduce peak stress under external pressure load.
  - Add spoke reinforce plates and stiffener rings
  - Bulk beam tube with iris
  - Need balance with thermal feedback effect
- To minimize pressure sensitivity
  - Asymmetric ring stiffeners (attached to jacket on one side)
  - End shell geometry of helium jacket



| Parameters                  | Beam Tube | Value       |  |
|-----------------------------|-----------|-------------|--|
| df/dp /Uz/mbar              | free      | -1.6        |  |
| ul/up /nz/mbai              | fixed     | +1.5        |  |
| LFD /Hz/(MV/m) <sup>2</sup> | free      | -8.7        |  |
|                             | fixed     | -1.4        |  |
| Tuning consitivity          |           | 467 kHz/mm  |  |
|                             |           | 32.7 kHz/kN |  |



### **ENGINEERING DESIGN**



Shell subcomponent Spoke subcomponent



# **CAVITY FABRICATION**





### SPOKE FORMING

- Forming die was developed at TRIUMF.
- Deep drawing was tested in copper before moving to Nb.
  - Die shape was good. No modification is required.
  - Blank sheet was optimized.
- Niobium half spokes were then punched and machined.





### HALF SPOKE INSPECTION



- Dimensions are on size.
- No significant material thinning.





#### After polishing



Salted water soak







### SHELL SPINNING

- Nb hemisphere was spun as a trial.
- 2-steps spinning for shell.
  - Spun nose cone
  - Spun outer shell
- Two Cu shells spun then move to Nb shells.













• Significant thinning was noticed on both Cu and Nb spun shells





• Significant thinning was noticed on both Cu and Nb spun shells





- Mechanical polishing was done at vendor
- Salted water (X2)
- Nitric acid brush (X2)
- Ultrasound
- 10um BCP both sides
- Salted water
- Ultrasound

#### **Rust spots**





**Post-BCP** salted water soak

July 20, 2017



### **OTHER PARTS**

#### **Collar forming**











Nb-Cu TIG welding





RF tubes Beam tubes SS flanges



Nb-SS Brazeing Follow recipe from CERN, ATLAS and FNAL. [1] J.P. Bacher, CERN/EF/RF 87-7. [2] J.D. Fuerst, TUP11, SRF2003. [3] L. Ristori, WEPPC058, IPAC2012.



### **EB WELDING**



Z.YAO, Balloon Single Spoke Resonator, SRF2017, China



# **FREQUENCY CONTROL**





### FREQUENCY CONTROL

### Conventional

Balloon











### **PRE-MEASUREMENT**





- Key dimensions
  - Accelerating gaps
    - 68.29±0.04mm
    - Nom. 67.5mm
  - Draft tube length
    - 54.38±0.10mm
    - Nom. 55mm

 Nose cones depth

- 74.90±0.01mm
- Nom. 75mm

### FREQUENCY MEASUREMENT



|                 | Conditions             | Target Freq. /MHz | Freq. Shift /MHz |
|-----------------|------------------------|-------------------|------------------|
| Operational     | 2К                     | 325.000           | -                |
|                 | Pre-tune               | N/A               | ±100kHz          |
| Jacketed Cavity | 2К                     | 325.000           | -                |
|                 | R.T. and atm.          | 324.683           | -213kHz-104kHz   |
|                 | Pre 30µm etch          | 324.723           | +40kHz           |
|                 | Tuning                 | 324.723           | As needed        |
|                 | Weld Jacket            | N/A               | ±160kHz* (PAVAC) |
| Bare Cavity     | 4K/2K w/ support       | 325.293           | +466kHz+104kHz   |
|                 | R.T. and atm.          | 324.723           | -                |
|                 | Tuning                 | 324.723           | As needed        |
|                 | Pre 150µm etch         | 324.921           | +198kHz          |
|                 | Tuning                 | 324.921           | As needed        |
| Weld            | Final weld             | -                 | -                |
|                 | Collar weld            | -                 | ±72kHz/mm*       |
|                 | RF Tubes weld          |                   | _                |
|                 | Equator weld shrinkage | 324.974           | +88x0.6*=+53kHz  |

Target frequency 324.974MHz±100kHz

1<sup>st</sup> stack-up 325.041MHz

@  $S_{21}$  -75dB and  $Q_L(Q_0)$  3000.



- Balloon variant was proposed to mitigate multipacting around operational field level.
- Cavity geometry was optimized to high R/Q and G, and high V<sub>acc</sub> @ 35MV/m E<sub>peak</sub> with reasonable B<sub>peak</sub>.
- Mechanical design complies ASME guidelines and minimizes pressure sensitivity for CW operation.
- Fabrication techniques on this prototype cavity were developed at TRIUMF, that extends TRIUMF's capability on cavity production.
- RSIP SSR1 cavities are under fabrication and currently in welding stage for #1 and RF stack-up stage for #2.
- Final EB welding soon, cavity processing and cold tests in August 2017.





- RISP
- Chris Compton, John Popielarski (FRIB)
- Waldemar Singer (DESY)
- Ralf Edinger
- TRIUMF machine shop, Vector Aerospace, AMS Industries ltd., ROARK





Canada's national laboratory for particle and nuclear physics and accelerator-based science

Thank you! Merci!

TRIUMF: Alberta I British Columbia I Calgary I Carleton I Guelph I Manitoba I McGill I McMaster I Montréal I Northern British Columbia I Queen's I Regina I Saint Mary's I Simon Fraser I Toronto I Victoria I Western I Winnipeg I York

Follow us at TRIUMFLab

f

05