

SRF Technology for PIP-II and PIP-III at Fermilab

Allan Rowe - PIP-II Project Engineer SRF2017 Conference, Lanzhou, China July 17th, 2017

Outline

- PIP-II Project Overview
 - PIP-II Goals and Performance Parameters
 - Accelerator Complex Components
- SRF LINAC Cryomodules
 - 162.5 MHz Half Wave Resonator Cryomodule
 - 325 MHz Single Spoke Resonator Cryomodules (SSR1, SSR2)
 - 650 MHz Elliptical Resonator Cryomodules (Low Beta, High Beta)
- Critical Subsystems
 - RF Couplers
 - Resonance Control & Tuners
- A look ahead: PIP-III
- Acknowledgments

PIP-II Goals

The goal of PIP-II is to support long-term physics research goals as outlined in the P5 plan, by delivering world-leading beam power to the U.S. neutrino program and by providing a platform for the future.

Design Criteria

- Deliver >1 MW of proton beam power from the Main Injector over the energy range 60 120 GeV, <u>at the start of LBNF operations</u>
- Support the ongoing 8 GeV programs including Mu2e, g-2, and short-baseline neutrino exp.
- Provide an upgrade path for Mu2e
- Provide a platform for extension of beam power to LBNF to >2 MW
- Provide a platform for multi-MW, high duty factor beam operations for future experiments

Technical Approach

Construct a modern 800-MeV superconducting linac of CW-capable components, operated initially in pulsed mode

🚰 Fermilab

PIP-II SC Linac Parameters and Performance Goals

Performance Parameter	PIP (Now)	PIP-II	
Particle Species	H-	H-	
Output Beam Energy to Booster	400	800	MeV
Linac Beam Current	25	2	mA
Linac Beam Pulse Length	0.03	0.54	msec
Linac Pulse Repetition Rate	15	20	Hz
Linac Beam Power to Booster	4	17	kW
Linac Beam Power Capability (@>10% Duty Factor)	4	~200	kW
Booster Protons per Pulse	4.3×10 ¹²	6.5×10 ¹²	
Booster Pulse Repetition Rate	15	20	Hz
Booster Beam Power @ 8 GeV	80	166	kW
Beam Power to 8 GeV Program (max)	32	83	kW
Main Injector Protons per Pulse	4.9×10 ¹³	7.5×10 ¹³	
Main Injector Cycle Time @ 60-120 GeV	1.33*	0.7-1.2	sec
LBNF Beam Power @ 60-120 GeV	0.7*	1.0-1.2	MW
LBNF Upgrade Potential @ 60-120 GeV	NA	2.4	MW

*NOvA operations at 120 GeV

‡Fermilab

PIP-II Accelerator Complex Components

6

SRF Linac Cryomodules

Technical and Production Challenges

- Design and build five CM types to operate in both a low-duty factor pulsed mode and continuous wave mode to achieve near and long-term machine operating goals. (Half-Wave Cryomodule is CW only)
- Compromise between operating cavity bandwidth and RF power requirements
- Maintain low cryogenic loads to maximize efficiency for eventual CW operation
- Low quantity production of each CM type limits efficiency

Design Approach

- Use a common CM design platform for CM types SSR1, SSR2, LB650 and HB650
- Leverage high Q0 techniques on all elliptical cavities
- Implement robust resonance control system to minimize RF power requirements

PIP-II Technology Map

IS	LEBT	RFQ ME	ΒΤ β=0.11	β =0.22	β =0.47	β =0.61	β =0.92
←		- RT	→ <		— sc —		>
	\mapsto	-		◀—	\rightarrow	←	\rightarrow
	DC 0.03 Me ^v	162. V 0.03 -1	5 MHz 0.3 MeV	325 10.3-1	5 MHz 185 MeV	65 185-	50 MHz 800 MeV
Section		Freq	Energy (MeV	/) Cav	v/mag/CM	1	Туре
RFQ		162.5	0.03-2.1				
HWR (β_{opt} =	0.11)	162.5	2.1-10.3		8/8/1		HWR, solenoid
SSR1 (β_{opt} =0	0.22)	325	10.3-35		16/8/ 2		SSR, solenoid
SSR2 ($\beta_{opt}=0$	0.47)	325	35-185	3	35/21/7		SSR, solenoid
LB 650 (β_g =	0.61)	650	185-500	3	3/22/11	5-ce	ll elliptical, double
HB 650 (β _g =	0.92)	650	500-800		24/8/4	5-ce	ll elliptical, double

*Warm doublets external to cryomodules

All components CW-capable

8

7/14/2017 Allan Rowe | SRF Technology for PIP-II and PIP-III at Fermilab, SRF2017

162.5 MHz Half-Wave Cryomodule Development at ANL

Ηz
1
//m)

Z. Conway, WEYA05

Highly optimized conical-halfwave resonators:

- B. Mustapha et al, IPAC12, Pg. 2289.
- Z. Conway et al, LINAC12, Pg. 624.
- Compact lattice layout and 2 K cryomodule:
 - P. Ostroumov et al, LINAC12, Pg. 461.
- 6 of required 8 resonators tested and ready for operation. Remaining two ready for acceptance testing.

40 cm

Cut-Away View of Cavity Model

Half-Wave Cryomodule Sub-components

HWR Cavity Performance & Trial Assembly

325 MHz Single Spoke Cryomodules (SSR1)

0 0 6

SSR1

coldmass

- Two SSR1 CMs required for PIP-II
- Acceleration range: 10 35 MeV
 - Active resonance control of cavities is operated by piezo driven tuners

Each CM contains

SSR1 EM	Value
Parameters	
Frequency	325 MHz
Shape	SSR
β_{g}, β_{opt}	0.215, 0.22
$L_{eff} = \beta_{opt} \lambda$	203 mm
Iris aperture	30 mm
Inside diameter	492 mm
Bandwidth f_0/Q	90 Hz
E_{pk}/E_{acc}	3.84
B_{pk}/E_{acc}	5.81 mT/(MV/m)
G	84 Ω
R/Q	242 Ω

- 8 SSR1 cavities with
 - β_{opt} = 0.222 operating at 325 MHz, 2K
- 8 input power couplers operating up to 10 kW CW
- 4 magnet packages operating at 2K. Each one contains a focusing solenoid and four corrector coils
 Coils

SSR1 string assembly

325 MHz SSR1 Cryomodule Status

- 10 cavities dressed, proceeding through qualification sequence
 - Light chemistry, cleanroom, VTS, and horizontal test
- 2 DAE (IUAC, BARC, RRCAT) cavities to be installed in the string
- String assembly start scheduled Feb. 2018
- New CM assembly Facility (Lab2) prepared for SSR1 CM
- SSR1 is technical platform for all downstream PIP-II CM designs

325 MHz Single Spoke Cryomodules (SSR2)

- Seven SSR2 CMs required for PIP-II
- Acceleration range: 35 185 MeV
- Each cryomodule contains:
 - 5 SSR2 Cavities β_{opt} = 0.47 operating at 325 MHz, 2K
 - 5 input power couplers operating up to 17 kW CW
 - 3 magnet packages operating at 2K. Each one contains a focusing solenoid and four corrector coils
 - Lattice: cavities (C) and focusing solenoids (S) is SCCSCCSC
- Active resonance control is operated piezo driven tuners

<u>Status</u>

- Least developed of the 5 PIP-II CM types, but CM design is very similar to SSR1
- Cavity RF design mature, including multipacting minimization, but not finalized
- Collaborative design (FNAL and BARC Mumbai) through the IIFC.
- The first bare cavity is planned to be manufactured by Nov. 2019 at BARC.

Value
325
0.475
0.438
3.38
5.93
115
297

SSR2 Electric (top) and Magnetic (bottom) 3D fields computed by COMSOL.

650 MHz Elliptical Cryomodules (B0.61, B.92)

LB650 & HB650 cryomodules are composed of three LB650 or six HB650 cavities without any

650 MHz Elliptical Cryomodules (B.61, B.92) – Cavity Results

650 MHz Cavity E&M Parameters

Cavity Parameters	LB650	HB650
β _G	0.61	0.92
β _{opt}	0.65	0.97
$R/Q(\beta_G)$, Ohms	327.4	576
$E_{surf}/E(\beta_G)$	2.43	2.1
$B_{surf}/E(\beta_G), mT/MV/m$	4.6	3.94
G, Ohms	187	260
Energy gain per cavity MeV	11.7	19.9

1E11

- Three of four multi-cell B.90 cavities qualified through VTS.
- Q0 > 3.5 E10 @ 20 MV/m
- Minimal radiation due to FE induced X-Rays during several tests up to Eacc < 25 MV/m.

650MHz Single-Cell Cavities, 2K

650 MHz 5-cell cavity on HPR Tool

•

650 MHz Elliptical Cryomodules Status

Cryomodule Design Activities

- 11 LB650 CMs, 4 HB650 CMs
- FNAL HB650 CM design continues through 2018, implementing lessons learned on SSR1 and LCLS-II designs.
- RRCAT-Indore, in collaboration with FNAL, is designing the 3-cavity LB650 CM based on the same principals as the HB650 CM.
- HB650 pre-series CM will be constructed at FNAL in 2019-2020 and serve as a test-bed for all 650 MHz CMs.
- VECC and INFN-Lasa, in collaboration with FNAL, are finalizing the prototype LB650 5cell cavity designs. Production to begin in 2018.

Near Term Cavity Goals

- Dress, vert. test and qual. 4 dressed cavs by 02/18
- Horizontally test 2 cavs by 12/18
 - Full high-power test with couplers/tuners

Resonance Control Program

- Continue improvement of feedback algorithm applied to SSR1 cavity
 - Synergy of LCLS II and PIP II active resonance control efforts
 - Upgrade plans include automating setting of filter bank parameters based on the cavity transfer functions.
- During production testing at STC of multiple SSR1 cavities continue improvement of overall compensation algorithm, work at PIP II operational conditions for all cavity types.
- Study/improve stability of compensation algorithm – <u>currently capable to control</u> <u>SSR1 to ~ 40 Hz pk-to-pk, within a factor of</u> <u>2 PIP-II specs.</u>
- Transfer algorithm/software from R&D electronics to PIP LLRF system.

- SR1 STC operating condition
- Eacc >12.5 MV/m
- 25 Hz repetition rate
- 7.5 ms fill & 7.5 ms flat-top

Cavity Tuners – 325 & 650 MHz CMs

LB/HB650 Double Lever

- 650 MHz tuner design adapted from LCLS-II
- Tuners must be stiff (> 60kN/mm) to combat LFD
- Piezo loads must be balanced with cavity/HV system stiffness
- Mechanical hysteresis • must be minimized

4 piezo-capsules for fast/fine tuning Maximal forces on the piezos ~ 3kN

A look ahead: PIP-III – SRF Linac Option

- 3rd Phase in Multi-stage Plan
 - PIP->PIP-II->PIP-III
- Provides multi-MW beam to future experiments
- 2.5 MW Beam Power to first customer, LBNF
- 0.8-3 GeV 650 MHz Linac
- 3-8 GeV 1.3 GHz Linac
- Or --- 0.8-8 GeV RCS
- Date: After 2030

21

🛠 Fermilab

Acknowledgements

- Local Partners
 - Argonne National Laboratory
 - HWR (Z. Conway)
 - Speaker Mike Kelly
- International Collaborators (many names!)
 - DAE Institutes
 - BARC SSR1, SSR2, RF
 - VECC LB650
 - RRCAT LB650, HB650, RF
 - IUAC LB650, SSR1
 - INFN LASA
 - LB650 (Pagani, et al.)
- FNAL
 - (P. Derwent, S. Holmes, V. Jain, S. Kazakov, D. Passarelli, Y. Pischalnikov, V. Roger)

🔁 Fermilab