

EUROPEAN SPALLATION SOURCE

The Superconducting Accelerator for the ESS project

Felix Schlander for the ESS SRF collaboration

www.europeanspallationsource.se 16 July, 2017

Outline

- Introduction
- Spoke cavities and cryomodules
- Elliptical cavities and cryomodules

Outline

- Introduction
- Spoke cavities and cryomodules
- Elliptical cavities and cryomodules

Cavity & cryomodule parameters

	€ 56 m >	← 77 m →	← 179 m →
	Spokes	Medium β	High β
Number of modules	13	9	21
Type of cavity	spoke	elliptical	elliptical
Cavities per module	2	4	4
Spokes / cells	2	6	5
Frequency / MHz	352.2	704.4	704.4
Geom. β	0.5	0.67	0.86
E _{acc} / MV/m	8	16.7	19.9
Cavity supply	INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY	Istituto Nazionale di Fisica Nucleare	Science & Technology Facilities Council
Cryomodule supply	INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY	CEA - Saclay	CEA - Saclay

Cavity & cryomodule parameters

	€ 56 m →	← 77 m →	← 179 m →	
	Spokes	Medium β	High β	
Number of modules	13	9	21	
Type of cavity	spoke	elliptical	elliptical	
Cavities per module	2	4	4	
Spokes / cells	2	6	5	
Frequency /	4			
Geom. β				
E _{acc} / MV/m				
Cavity supply				
Cryomodule				
	INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY	CEA - Saclay	CEA - Saclay	

- Introduction
- Spoke cavities and cryomodules
- Elliptical cavities and cryomodules

Spoke cavities – vertical test results

DOUBLE-SPOKE CAVITY

352.21
0.50
9.0
2
61
38
133
427
0.639
6.8
4.3
335

Spoke cavities – vertical test results

Romea High Power test @ FREIA

Romea High Power test @ FREIA

Romea High Power test @ FREIA

EUROPEAN SPALLATION SOURCE

THPB035 – H. Li

Thanks to: H. Li, M. Jobs, R. S. Kern, A. K. Bhattacharyya, R. Ruber, L. Hermansson

Spoke cryomodule prototype - tuner

Slow tuner

Main purpose : Compensation of large frequency shifts with a low speed

Actuator used : Stepper motor with planetary gearbox (1:50)

Fast tuner

Main purpose : Compensation of small frequency shifts with a high speed

Actuator used : Piezoelectric actuators (no load displacement : ~ 50 μm @ RT)

Spoke cryomodule prototype - tuner

Main purpose : Compensation of large frequency shifts with a low speed Actuator used : Stepper motor with planetary gearbox (1:50) Fast tuner Main purpose : Compensation of small frequency shifts with a high speed Actuator used : Piezoelectric actuators (no load CTS parameteers / design results

Slow tuner

Cavity sensitivity 128 kHz/mm **Cavity stiffness** 20 kN/mm Max cavity 1.28 mm deformation 1.28 mm / 160 **Coarse tuning range** kHz Resolution 1 Hz/step Piezo range @RT ~ 1.5 kHz ~ 675 Hz @2 K

- Introduction
- Spoke cavities and cryomodules
- Elliptical cavities and cryomodules

Elliptical cavity prototypes @ CEA

Elliptical cavity prototypes @ CEA

Elliptical cavity prototypes @ CEA

E55

EUROPEAN SPALLATION SOURCE

Medium-beta prototypes @ LASA

Parameters	INFN design	ESS req.
R _{iris} (mm)	50	≥47
Cell to cell coupling k	1.55%7(+26%)	
π-5π/6 mode sep.(MHz)	0.707(+30%)	>0.45
G (Ω)	198.8	
Optimum beta, β_{opt}	0.705	0.705
Max R/Q at $\beta_{opt}(\Omega)$	374 🔄 (-6%)	
E_{acc} at β_{opt} (MV/m)	16.7	16.7
E_{peak}/E_{acc}	2.55 7 (+7%)	
E _{peak} (MV/m)	42.6	< 45
B _{peak} /E _{acc} (mT/MV/m)	4.95 7 (+3%)	
${\rm Q}_{\rm 0}$ at nominal gradient	>5×10 ⁹	>5×10 ⁹
Q _{ext}	7.8×10 ⁵	5.9~8×10 ⁵

Medium-beta prototypes @ LASA

EUROPEAN SPALLATION

SOURCE

Status @ STFC for high-beta cavities

EUROPEAN SPALLATION SOURCE

Status @ STFC for high-beta cavities

Status @ STFC for high-beta cavities

EUROPEAN SPALLATION SOURCE

Status @ STFC for high-beta cavities

Step 1: Copper coax cavity, 300K (complete)

- validates freq tracking of the LLRF system
 - Q~5000 $\tau_{L} = QL/\omega ~ 1\mu s$
 - Heated & cooled ± 10-20°C approx
- SEL –works, ioc software with labview being developed

Step 2: Niobium coax cavity < 9.3K (ongoing)

- Cryocooler being configured
 - Q ~ 10^7 to 10^8 ; τ_L ~ 23ms
 - Higher Q test of LLRF
 - Low power testing of rack & control SW
- Aluminium mock-up (right) to check 'clean' assembly method

Step 3: Niobium elliptical HB cavity PO2 (CEA) (planning)

- Step-by-step commissioning of Vertical Test Facility
- High power testing
 - Q ~ 5 x 10⁹ at ~20MV/m
 - Needs radiation shield & large cryostat!
- Also testing handling, loading, cryostat etc

Elliptical tuning system

EUROPEAN SPALLATION SOURCE

Saclay V tuner, adapted for ESS cavities

Elliptical tuning system

EUROPEAN SPALLATION SOURCE

Saclay V tuner, adapted for ESS cavities

Cavity sensitivity	215 kHz/mm
Cavity stiffness	1.3 kN/mm
Coarse tuning range	650 kHz

Testing at test stand 2 @ ESS

EUROPEAN SPALLATION SOURCE

ESS related contributions at

MOPB018	Testing of SRF cavities and cryomodules for the European Spallation Source	N. Elias, E. Asensi Conejero, C. Darve, F. Håkansson W. Hees, C Maiano, F. Schlander
MOPB019	Interface Challenges for the SRF Cryomodules for the European Spallation Source	F. Schlander, C. Darve, N. Elias, C. G. Maiano, P. Bosland, G. Olry
MOPB020	An Optimal Procedure for Coupler Conditioning for ESS Superconducting Linac	R. Zeng , E. Asensi Conejero, C. G. Maiano, H. Li
MOPB040	ESS High Beta Cavity Test Preparations at Daresbury Laboratory	P. A. Smith , L. Bizel-Bizellot, K. Dumbell, M. Ellis, P. Goudket, A. Moss, E. F. Palade, S. Pattalwar, M. D. Pendleton, A. Wheelhouse
TUPB007	Vertical Test Results on Ess Medium Beta Elliptical Cavity Prototypes Equipped With Helium Tank	E. Cenni
TUPB046	Experience on large-grain multi-cell cavity based on INFN-LASA medium- beta design for the ESS	M. Bertucci , A. Bignami, A. Bosotti, J. Chen, P. Michelato, L. Monaco, R. Paparella, D. Sertore, C. Pagani
TUPB047	Passband Modes Excitation Triggered by Field Emission in Ess Medium Beta Cavity Prototype	J. Chen , M. Bertucci, A. Bosotti, P. Michelato, L. Monaco, R. Paparella, D. Sertore, M. Eshraqi, M. Lindroos, S. Pirani, T. P. Å. Åkesson, C. Pagani
TUPB048	INFN- LASA Medium Beta Cavity Prototypes for ESS Linac	D. Sertore, M. Bertucci, A. Bignami, A. Bosotti, J. Chen, P. Michelato, L. Monaco, R. Paparella, S. Pirani, C. Pagani
TUPB060	Innovative Cryogenic Test Facility for Testing SRF Cavity Series Production	L. Bizel-Bizellot , M. Ellis, S. Pattalwar, M. D. Pendleton, P. A. Smith, A. Wheelhouse
ТНРВ035	High Power Testing of the First Dressed ESS RF Cavity	H. Li , K. Gajewski, L. Hermansson, M. Jobs, R. Ruber, R. Santiago Kern
THYA05	Developments and progress with ESS Elliptical Cryomodules at CEA- Saclay and IPN-Orsay	F. Peauger
	Not mentioned during presentation	38

Acknowledgements

