

High-efficiency, High-current Optimized Main-linac ERL Cryomodule

Fumio Furuta Cornell University

- Introduction
- Initial commissioning
- Microphonics in the MLC and compensations
- Beam acceleration test
- Summary

Introduction

ff97@cornell.edu

SRF17, Lanzhou, 17-21July2017

MLC Design

ff97@cornell.edu

MLC Design

Design goals

High cavity quality factor Q₀ (2x10¹⁰ at 16.2MV/m, 1.8K), and a high loaded-Q design of ~6x10⁷ (~10Hz half bandwidth).

High current (100mA average current);

The suppression of high order modes (HOMs) excited by beam in cavities is essential!! • Operate in CW at 1.3GHz with 2ps bunch length, normalized emittance 0.3mm-mrad,

The MLC in L0E at Wilson lab, Cornell, WG on cavity #6

MLC Design

Design goals

☐ High cavity quality factor Q₀ (2x10¹⁰ at 16.2MV/m, 1.8K), and a high loaded-Q design of ~6x10⁷ (~10Hz half bandwidth).

High current (100mA average current);

The suppression of high order modes (HOMs) excited by beam in cavities is essential!! • Operate in CW at 1.3GHz with 2ps bunch length, normalized emittance 0.3mm-mrad,

MLC Parameters		Number of HOM loads	7
Number of 7-cell cavities	6	 HOM power per cavity 	200 W
Acceleration gradient	16.2 MV/m	Couplers per cavity	1
• R/Q	774 Ohm	RF power per cavity	10 kW max.
• Q _{ext}	6.5 x 10 ⁷	Amplitude/phase stability	10 ⁻⁴ / 0.05° (rms)
Total 2K / 5K / 80K loads:	76W / 70W / 1500W	 Module length 	9.8 m

MLC Works

MLC Works

Cavity surface preparations			
1) bulk BCP	4) 120C x 48hrs bake		
2) 650C out-gassing	5) HF rinse		
3) final BCP			

MLC Works

w/ additional mag. shield

MLC Works

Initial commissioning

ff97@cornell.edu

SRF17, Lanzhou, 17-21July2017

Initial MLC test/commissioning

- Initial cool down
- Cavity test at 1.8K
- Thermal cycles
- Slow tuner test
- HOM scan
- LLRF and microphonics study

What we learned/done during the initial commissioning?

Currently, we have one HPA for the MLC

MLC initial RF test; Cavity field

• The MLC can provide 76MeV per ERL turn, which significantly exceeds the CBETA requirement of 36MeV per ERL turn.

MLC initial RF test; Q₀ at 1.8K

MLC HOM scan and analysis

• NO HOM limits BBU to below 100mA in one turn.

LLRF and Microphonics

LLRF and Microphonics

•

MLC is,,,

What we learned/done during the initial commissioning?

Cryomodule cooldown procedure Evaluate cavity performances, voltage and quality factor Thermal cycle effects on cavity performances • **RF** Component tests; slow tuner, HOM absorbers LLRF and Microphonics study • Analysis of vibration sources on microphonics • **RF** power requirement The MLC is ready for initial beam!

MLC at its final location, 2017

SRF17, Lanzhou, 17-21July2017

Microphonics in the MLC and compensations

High Q_L and Microphonics

Microphonics (mechanical cavity vibration) is one of the major sources of **frequency perturbation (detuning)** and **field perturbation** of SRF cavities.

Lorentz Force Detuning

Cornell Laboratory for

Accelerator-based Sciences and Education (CLASSE)

LFD measurements/compensation

Microphonics Detuning Meas.

- The data sets shown are taken without any active compensations.
- Max detuning in cavity #5 (un-stiffened) is 163 Hz in the measured dataset which caused by the opening of a valve in the 5K pre-cool line. We will revisit cavity #5 later, and resolve this by cryo optimization.
- Major contributions at 40 Hz and 80 Hz are probably driven by 5K Helium gas flow.

Microphonics Detuning Meas.

- The data sets shown are taken without any active compensations.
- Max detuning in cavity #5 (un-stiffened) is 163 Hz in the measured dataset which caused by the opening of a valve in the 5K pre-cool line. We will revisit cavity #5 later, and resolve this by cryo optimization.
- Major contributions at 40 Hz and 80 Hz are probably driven by 5K Helium gas flow.

Microphonics Detuning Meas.

- The data sets shown are taken without any active compensations.
- Max detuning in cavity #5 (un-stiffened) is 163 Hz in the measured dataset which caused by the opening of a valve in the 5K pre-cool line. We will revisit cavity #5 later, and resolve this by cryo optimization.
- Major contributions at 40 Hz and 80 Hz are probably driven by 5K Helium gas flow.
- Cavity #6 shows a strong intermittent source of vibration around 8 Hz which is weak in other cavities.

Microphonics Detuning Meas.

- The data sets shown are taken without any active compensations.
- Max detuning in cavity #5 (un-stiffened) is 163 Hz in the measured dataset which caused by the opening of a valve in the 5K pre-cool line. We will revisit cavity #5 later, and resolve this by cryo optimization.
- Major contributions at 40 Hz and 80 Hz are probably driven by 5K Helium gas flow.
- Cavity #6 shows a strong intermittent source of vibration around 8 Hz which is weak in other cavities.

Microphonics Sources

1) 40 Hz, 80 Hz probably from Thermo-acoustic oscillations occurring in needle valves.

Hot

Cold

3) Peak events are caused by small bubbles generated during the actuation of the pre-cool

valve.

Courtesy of Nilanjan Banerjee Valve image from Warren Schappert, FNAL

Microphonics Sources

- 1) 40 Hz, 80 Hz probably from Thermo-acoustic oscillations
- 2) 8 Hz is generated from the blower.

Peak events are caused by small bubbles generated during the actuation of the pre-cool

Courtesy of Nilanjan Banerjee Valve image from Warren Schappert, FNAL

Cold

Microphonics compensations

LFD Compensation

$$V_{
m pz}(t) = a V_{acc}^2 + b$$

Proportional Integral Feedback Loop

- Currently only the integral term is used which automatically works as a low pass filter. The feedback loop is effective at sub Hz frequencies. $u_{\rm pz}(t) = K_P \delta f(t) + K_I \int_0^t \delta f(t') dt'$
- If the field is increased slowly then it also compensates for LFD.

Feedforward Algorithm

Idea: Treat this as a real time least squares optimization problem. Actuator Signal: $u_{pz}(t_n) = \sum I_{mn} \cos \omega_m t_n + Q_{mn} \sin \omega_m t_n$

Detuning:

$$\delta f_{\text{comp}}(t_n) = \delta f_{\text{ext}}(t_n) + \sum_m \alpha_m \{ I_{mn} \cos(\omega_m t_n - \phi_m) + Q_{mn} \sin(\omega_m t_n - \phi_m) \}$$

Where, α_m and ϕ_m describe the transfer function from actuator to detuning at the frequency ω_m . Mean Square Detuning: $F_n = E[\{\delta f_{\text{comp}}(t_n)\}^2] \sim \{\delta f_{\text{comp}}(t_n)\}^2$

Minimize the mean square detuning using a gradient descent algorithm.

$$\begin{split} I_{m,n+1} &= I_{m,n} - \mu_m \delta f_{\text{comp}}(t_n) \cos(\omega_m t_n - \phi_m) \\ Q_{m,n+1} &= Q_{m,n} - \mu_m \delta f_{\text{comp}}(t_n) \sin(\omega_m t_n - \phi_m) \\ \phi_{m,n+1} &= \phi_{m,n} - \eta_m \delta f_{\text{comp}}(t_n) \{ I_{m,n+1} \sin(\omega_m t_n - \phi_m) - Q_{m,n+1} \cos(\omega_m t_n - \phi_m) \} \\ \text{are fixed by the operator} \\ \end{split}$$

 $\omega_{\rm m}$ and $\mu_{\rm m}$ are fixed by the operator.

ff97@cornell.edu

Compensations results

Cavity#6 (stiffened)

- The LMS algorithm was applied on
- he LMS algorium was and hree vibration frequencies of 8Hz, 40Hz and 80Hz. Algorithm is stable and reduces peak detuning from 30Hz to 16Hz at 10⁻²
- Peak detuning ~30Hz at 7.5MV. New vibration peak at 325Hz (a mechanical resonance maybe) limited the effectiveness of compensation.

<u>Cavity#3 (un-stiffened)</u>

- Peak detuning without compensation:137Hz @1MV with compensation: 61Hz @4MV
- The modified algorithm introduces energy into many frequency components reducing it's effectiveness.

Plots by N. Banerjee

-100

-50

Detuning (Hz)

0

50

100

 10^{-8}

-150

400

No Compensation

200

Vibration Frequency (Hz)

100

n

0

PI with Adaptive IQ control at 4 MV

300

ff97@cornell.edu

Peak Detuning vs. Cavity Voltage

Calculations on Peak Detuning vs. Cavity

Beam acceleration test

Accelerate Beam through the MLC

Cornell ERL high voltage DC gun and Injector Cryomodule (ICM) were connected to the MLC via the entry beam line; the beam stop assembly was also installed as the exit line.

SRF17, Lanzhou, 17-21July2017

Beam stop assembly

12MeV beam through the MLC

Beam acceleration with ICM + MLC Cavity#2

- Machine frequecny; 1.3GHz
- 6MeV from ICM
- 6MeV from MLC <u>cavity#2</u> (stiffened)
- LFD compensation on.
- Peak detuning; 18Hz

Beam acceleration with ICM + MLC Cavity#6

- Machine frequency; 1.299925GHz, due to the tuning range of MLC cavity #6
- 6MeV from ICM (cavity#1, #3, #4, and #5)
- 6MeV from MLC <u>cavity#6</u> (stiffened)
- LFD compensation on.
- Peak detuning; 33Hz

Long term stability

Year	Month	Items		
2017	June	LLRF optimization Microphonics study and compensation Beam through MLC test		
	July	NO RF test due to water shutdown		
	August	Cryo. optimization 1 ^{s⊤} SSA delivery will be the end of August		
	September	Microphonics study and compensation		
	October	SSA installation, initial commissioning with wave		
No	November	All SSA will be delivered by the end of the year		
	December	Multi MLC cavity operation with SSAs		
2018	January	Revisit Q ₀ vs. E _{acc}		
	February			
	March			
	April	Fractional Arc Test (FAT)		

- □ The MLC, which is the first high current, high Q₀ linac module ever, has been comissioned successfully.
- The 7-cell cavities in the MLC can provide an energy gain of up to 76MeV per ERL turn.
- A new microphonics compensation algorithm has been implemented and is stable and more effective than a traditional feedforward algorithm.
- A beam with a total energy gain of 12MeV was transported through the MLC, including active detuning compensation using the piezoelectric tuner, reaching the defined goal for the initial CBETA beam test.
- The next milestone for the MLC is to confirm that it can reach the 1st pass total energy gain of 36MeV.

Thanks to the ERL team

Active compensations

Special thanks to Nilanjan Banerjee, Adam Bartnik, John Dobbins, Peter Quigley, and Vadim Veshcherevich.

> This work was performed with the support of New York State Energy Research and Development Agency (NYSERDA) and of the National Science Foundation.

Thank you for your attention!