

PRODUCTION STATUS OF SUPERCONDUCTING CRYOMODULES FOR THE FACILITY FOR RARE ISOTOPE BEAMS (FRIB) PROJECT

CHRIS COMPTON

18th International Conference on RF Superconductivity Lanzhou, China July 17-21, 2017

 $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Outline

- FRIB cryomodule assembly scope
- FRIB cryomodule designs
- FRIB cryomodule assembly floor, workflow, and control
- FRIB cryomodule production status
- Lessons learned
- Resource balancing and optimization
- Summary

FRIB Cryomodule Scope

 $\beta = 0.041$ cavity $\beta = 0.085$ cavity $\beta = 0.29$ cavity

 $\beta = 0.53$ cavity

Fragment Reaccelerator Separator 200 feet 50 meters Production Target Beam Delivery System Systems Folding Segment 2 Linac Segment-3 Linac Segment 1 Front End -Linac Segment 2 F342r13 Folding Segment 1

Quarter W	ave Cryomodule				
		Number of Cryomodules	Number of Cavities	Number of Solenoids	
β = 0.041	Accelerating Cryomodules:	3 + 1 spare	12 + 4 spare	6 + 2 spare	
β =	Accelerating Cryomodules:	11 + 1 spare	88 + 8 spare	33 + 3 spare	
0.085	Matching Cryomodules:	1 + 1 spare	4 + 4 spare	-	
Half Wave	Cryomodule				
$\beta = 0.29$	Accelerating Cryomodules:	12	72	12	
$\beta = 0.53$	Accelerating Cryomodules:	18	144	18	
	Matching Cryomodules:		4	-	
TOTAL		46 + 3 spare	324 + 16 spare	69 + 5 spare	
		C	ompton, SRF Conferer	, Slide 3 nce 2017	

FRIB Cryomodule Designs

- All six modules using the same bottom-up design approach
- All cryomodules share large portion of common components to simplify design and facilitate fabrication.
- Collaborate with JLAB on cryomodule design (β=0.041 and β=0.29)
- Collaborate with ANL on coupler and tuner design

β=0.041

β=0.085

β=0.085 Matching

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Bottom-up Cryomodules Design Approach

- Resonators (at 2 K) and magnets (at 4.5 K) both supported from the bottom to facilitate alignment
- Cryogenic system is decoupled from coldmass string to isolate vibration to minimize the microphonic excitation
- Optimized and integrated with cryo-distribution
 - Bayonet interface to allows for warm-up and servicing of individual cryomodules
 - 2K-4K heat exchanger inside module to maximize 2K efficiency
- Single layer "local" magnetic shield to be cost effective and less sensitive to magnet operation
- Use common cryomodule designs principles for all six cryomodule types
 - Support rails, cryogenic circuit, thermal shield, vacuum vessel

Cryogenic System

Baseplate

β = 0.53 Cryomodule Assembly Sequence

Completed cold mass assembly in clean room Cold mass assembly transport to cryomodule assembly area

Cold mass ready for baseplate

Start baseplate assembly

Baseplate ready for cold mass

Cold mass on baseplate

Completed cryogenic circuit

Thermal shield installation

Vessel cover installation

Tuner valve manifold installation

Transport to SRF High Bay

Transport into test bunker

- Five assembly bays ongoing in parallel
- Two commissioned cryomodule test bunkers
- Additional assembly space for subcomponents (solenoid leads, o-rings, G-10 posts)
- 2 overhead cranes
- 2 loading bays for transport of coldmass in and completed cryomodule out

Cryomodule Assembly Workflow

Inventory and Assembly Status Tracked using Trello (electronically)

Conference 2017, Slide 9

Assembly Status and Task Completion Tracked using Trello (electronically)

Base 24

G-10 Extern Intern

Lower Lower Rail Ir

								Procedures		×
								in list <u>Cryogenics</u>		
🛞 🛄 https://trello.com/bires/WigCBR/bay-1-scm-803 ρ + 🛍 C 🛄 (1) Bay 1: SCM-803 Trello Χ								<u> Edit the rescription</u>		Add
Boards ,C			Lu Trello				_			A Members
Bay 1: SCM-803 FRIB Cryomo	idule Assembly 🏠 🧟 Team Visible					You have the Trello	\square	Procedures	Hide completed items Delete	Labels
ase Plate S00010	85 Cryomodule Assembly FRIB ···· 003	Cryogenics	Cryomodule Assembly ···	Thermal Shield S0000X ···	Vacuum Vessel S00002	Reload r	1009			
Procedures	Procedures	Procedures	Equipment (Below)	Procedures	Procedures		\leq	in all cryo planding support system		Ciecklist
Equinment (Below)	₩ 5/5	Equipment (Below)	Procedures	Equipment (Below)	Equipment/Below)			Install AK upper Header		② Due Late
	Cold tuner components					-	Ĵ	Install 2K upper Header		@ Attachn ent
Bayonet Box S00009	-	Feedthroughs	Cold-mass Instrumentation	Aluminum Thermal Shield S000011	Solenoid Leads		T	Install BOK crub bench sub assemblias		
	Lower mag shields	Thermal Intercepts	Magnetic Shileding	Instrumentation	Interface Flanges		5	Install 4K crvo bench sub assemblies		Actions
G-10 Posts	Instrumentation	-	Add a card	-	-	/	2	Install 2K cryo bench sub-assemblies		→ Move
	-	Cryoplumbing support structure		Thermal Intercepts	Cryogenic Support Interfaces		~	Weld-cavity-bellows		Comu
External Layer MLI	Beta 0.085 Quarter Wave Resonator S85012	Lower headers		Add a card	End Cap Interface		$\overline{}$	Weld-cavity2K-manifold		всору
Internal Laver MI L	0/53	-			Add a card		$\overline{\checkmark}$	Wire-2K heaters		
	Beta 0.085 Quarter Wave	4K upper header					~	Install level sensors		≦ Archive
O-Ring	Resonator S85027 ♀ 1 ☑ 0/53	2K upper header					~	Coldshock/leak check feedthroughs		Alchive
Lower Cold-mass Plumbing	-	90K Cruc banch subassambly					\checkmark	Install temperature sensors		Share and more
Ø 1	Beta 0.085 Quarter Wave Resonator S85902	our ciyobencii subassenibiy					\checkmark	Weld-inlet/outlet-connections (50K)		
ower Cold-mass Instrumentation	-	4K Cryo-bench subassembly					\checkmark	Leak-check-inlet/outlet-manifold		
	Beta 0.085 Quarter Wave Resonator S85022	2K Crvo-bench subassembly					\checkmark	Solenoid fill connections (4K)		
Lower Cold-mass RF cables	0/53						\checkmark	Thermal intercept installation		
Rail Interface Hardware	Beta 0.085 Quarter Wave	Temperature sensors					\checkmark	Weld rail inter connections		
udd a card	Resonator S85901	Field Sensors					\checkmark	Weld-cavity fill flex lines		
		-					~	Leak check cavity to header bellows		
	Beta 0.085 Quarter Wave Resonator S85026	Level Sensors					~	Leak check rails		
	☑ 0/53	2K Heaters	,				\leq	Leak-check-cavity-fill (flex-line)		
	Beta 0 085 Quarter Wave	Add a card					~	Install heat exchanger		
	Add.a.card	Add a card					\leq	Wold heat exchanger		
ps://trello.com/c/qE8fZM22/4-external-layer-n	nli						Ě	Install Trange alignment tooling		
							X	Colonaid land ann assambly (installation		
								Weld solenoid exhaust		
								eak check solenoid exhaust		
								Multi to relief flange		
								Welp IT connections		
								Add at item	*	
									•	
							P	Add Comment		
							-			
						See.	Compton, SF	RF Conference 2017	7	

Cryomodule Production Status

- 0.041 3/3 cryomodules built and certified, 3 in tunnel (Spare also complete)
- 0.085 6/11 cryomodules built, 4 certified, 4 in tunnel
 - Four cryomodules in progress (Bays 1, 2, 3, 4)
- 0.085M 1/1 cryomodules built, certified, and in tunnel
- 0.29 1/12 built

FRI

- First cryomodule completed, undergoing system test
- Second cryomodule in progress
- 0.53 1/18 cryomodules built, 1 certified, 1 in tunnel
 - Second cryomodule in progress (Bay 5)
- 0.53M 0/1 cryomodules built

12 of 46 Cryomodules built

Refine and Expand QA program as Production increases

- Vacuum leaks in cavity helium vessel bi-metal transitions:
 - Tracking serial # of bi-metal back to vendor, reevaluate cutting maps
 - Mitigation: additional leak check step added

• β = 0.53 cryomodule vacuum vessel: found leak at

• Leak check of large vessel is a technical challenge

Mitigation: educate vendor and send FRIB technical

Instrumentation wiring broken after cool down

Instrumentation checked several times (warm) during

• Mitigation: Add cold shock step for soldered joints

» After cold shock at vendor

final assembly step

representative

assembly

» After VTA(cold) testing at FRIB

Leak check performed at vendor

β=0.041 cavity bimetal on helium vessel failure

β=0.53 cryomodule vacuum vessel welding defect

FRIB

Issues: Design Changes, Fabrication Changes, Human Error

- SC solenoid impregnation changed from Stycast 2850 to paraffin at preproduction stage
 - Overlooked impact on in-house processing: temperature during ultrasonic cleaning
 - Mitigation: changed ultrasound temperature setting; include stakeholders on ECO forms to communicate changes
- Rough handling at storage
 - Sealing surface of vacuum vessel damaged at storage facility after ACL. Storage facility staff transported the vessel improperly with folk lift.
 - Mitigation: FRIB Receiving Department developed documents to communicate special requirements for equipment handling, provide additional protection to critical areas

Human error

- Damage to cold cathode vacuum gauge controller during welding
- Damage to instrumentation wire due to welding
- Potential damage to leak checks due to pumping Argonne gas from welding/purging
- Mitigations: enhance training; educate on-floor workers on cryomodule basics; improve design to reduce risk of human error

Assembly Floor Training

- A series of training sessions were given to all members of the cryomodule assembly team to provide better knowledge of what they are building
- Explain the basis of the design elements
 - Importance of magnetic hygiene
 - Thermal isolation
 - Importance of cleanliness
 - Beam line vacuum
- Allow assembly team to execute work instructions with a better understanding of the basis for the instructions
- Allow assembly team to be better-equipped to troubleshoot assembly issues

Keep Check on Beam Line Vacuum At All Times

- The beamline space should always be at UHV
- Ion pump controller
- One green light = good vacuum
- More that one light inform line manager
- Always keep plugged into the UPS
- Check and record beam line vacuum each day
- DO NOT OPEN BEAMLINE VACUUM
- DO NOT VENT BEAMLINE VACUUM

Training Outline

- 01 Introduction Cryomodules
- 02 General work flow and hazards on cryomodule assembly floor

CAUTION

- 03 How to handle cleanroom assembly
- 04 How to handle vacuum and leak check
- 05 How to handle cryogen during work
- 06 How to handle welding
- 07 How to handle instrumentation
- 08 How to handle magnetic shielding material and demag requirements on sub components
- 09 Cryogenic piping
- 10 Cryomodule testing

FRIB

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Lessons Learned – ease assembly/reduce risk

- Simplify piping more subassemblies, less in-the-field welds, use of flexlines
- Magnetic shields commercial sheet sizes, pem nut construction, mostly bench assembled
- Solenoid lead protection wiring centering harness
- Penetration covers protective covers for vacuum vessel and thermal shield penetrations during assembly

Cryogenic piping subassemblies

Magnetic shields using fasteners for assembly

Solenoid lead centering harness

Protective covers for vacuum cover penetrations during installation

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Resource Balancing

- One assembly team
- Cryomodule stays in place in one bay for the entire build
- Resources are balanced between assembly bays to optimize the work flow
- Welding is the most time consuming part of cryomodule assembly

Welding Optimization

- Decrease welding time and increase quality by designing joints to be compatible with orbital welder
- Working toward procedures in which the majority of welding is done as a subassembly, prior to coldmass delivery: reduce complexity and risk

Commercial Orbital Welder – used to weld circular tube geometries

Cryogenic system welded together as subassembly and lowered onto base plate after coldmass installation

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Summary

- FRIB cryomodule assembly in full production
- FRIB has implemented acceptance inspections to ensure quality of incoming components
- Work is controlled by a check and balance between work instructions, task sign-offs, standard operational procedures, and engineering hold points
- Assembly work flow optimized by upfront inventorying and kitting
- Employee training required for all personnel working directly with cryomodules
- Cryomodule assembly on pace with project schedule
- But...FRIB is still learning and seeking opportunities to further increase efficiency.

