Author: Nakai, H.
Paper Title Page
WEYA02 Construction and Performance Tests of Prototype Quarter-wave Resonator and Its Cryomodule at RIKEN 681
 
  • N. Sakamoto, O. Kamigaito, H. Okuno, K. Ozeki, K. Suda, Y. Watanabe, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  • H. Hara, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
  • E. Kako, H. Nakai, K. Umemori
    KEK, Ibaraki, Japan
  • K. Okihira
    MHI, Hiroshima, Japan
 
  Funding: This research work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).
This paper describes the development of a superconduct- ing quarter-wave resonator for use in an intense low-β-ion linear accelerator. The prototype cavity was fabricated from bulk Nb, inner cavity surface processing was per- formed, and vertical testing was carried out. In the vertical test, a Q-value of 8.7·108 was obtained with an operating field gradient of 4.5 MV/m at a frequency of 75.5 MHz. Here, we describe the results of the performance tests and various phenomena we experienced during the tests. After the vertical tests, the helium vessel was assembled and the prototype resonator was integrated into a cryomodule. Initial cooldown testing results are described. Performance testing of the cryomodule is continuing. The situation of upgrade of the RIKEN heavy-ion RIKEN Linac (RILAC) is also reported.
 
slides icon Slides WEYA02 [7.751 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-WEYA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYA02 Achievement of Stable Pulsed Operation at 36 MV/m in STF-2 Cryomodule at KEK 722
 
  • Y. Yamamoto, T. Dohmae, M. Egi, K. Hara, T. Honma, E. Kako, Y. Kojima, T. Konomi, T. Kubo, T. Matsumoto, T. Miura, H. Nakai, K. Nakanishi, G.-T. Park, T. Saeki, H. Shimizu, T. Shishido, T. Takenaka, K. Umemori
    KEK, Ibaraki, Japan
 
  In the Superconducting RF Test Facility (STF) in KEK, the cooldown test for the STF-2 cryomdoule with 12 cavities has been done totally three times since 2014. In 2016, the 3rd cooldown test for the STF-2 cryomodule including the capture cryomodule with 2 cavities was successfully carried out. The main achievement is the vector-sum operation with 8 cavities at average accelerating gradient of 31 MV/m as the ILC specification (2 of 8 cavities achieved 36 MV/m with piezo compensation), and the others are the measurement for Lorenz Force Detuning (LFD) and unloaded Q value, and Low Level RF (LLRF) study, etc. In this paper, the result for the STF-2 cryomodule in three cooldown tests will be presented in detail.  
slides icon Slides THYA02 [4.042 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-THYA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)