Author: Calaga, R.
Paper Title Page
MOPB079 HOM Coupler Alterations for the LHC DQW Crab Cavity 249
 
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • G. Burt, N.C. Shipman
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga
    CERN, Geneva, Switzerland
  • S. Verdú-Andrés, Q. Wu, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  As part of the High Luminosity Large Hadron Collider (HL-LHC) project, 16 crab cavities are to be installed in the LHC in 2025. The two crab cavity designs are the Double Quarter Wave (DQW) and Radio Frequency Dipole (RFD). Preliminary beam tests in the Super Proton Synchrotron (SPS) are planned for both cavity types, with the DQW scheduled for testing in 2018. In reference to to Higher Order Mode (HOM) damping, the DQW has three identical on-cell HOM couplers. These HOM couplers provide a band-stop response at the frequency of the fundamental mode and act as a transmission path for the cavity HOMs. For the SPS cavity design, several geometric constraints exist. These give rise to dimensional limitations which in-turn impose limitations on the RF performance of the HOM couplers. As such, for the LHC assembly, the HOM coupler design is re-visited to take into account the relaxed geometric limitations, hence allowing the feasibility of an increased RF performance to be investigated. In addition to the RF performance, several geometric alterations were incorporated to ease manufacturing processes, tolerances and costs.  
poster icon Poster MOPB079 [2.038 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB104 Development of a Novel Supporting System for High Luminosity LHC SRF Crab Cavities 304
 
  • T.J. Jones
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • K. Artoos, R. Calaga, O. Capatina, T. Capelli, M. Sosin, J.S. Swieszek, C. Zanoni
    CERN, Geneva, Switzerland
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • T.J. Jones
    Lancaster University, Lancaster, United Kingdom
 
  Compact SRF Crab Cavities are integral to the HL-LHC upgrade. This paper details the design of support structures within the SPS (Super Proton Synchrotron) Crab Cavity Cryomodule. For ease of alignment each cavity is supported with the mechanical tuner and RF Fundamental Power Coupler (FPC) via a common support plate. To reduce heat leak and remove bellows in the FPC it was determined that this would be the fixed support for the cavity (V. Parma, 2013). In addition, novel flexural blades were designed to give increased stiffness yet allow for thermal contraction of the cavity towards the fixed point of the FPC. This approach was superior when compared via simulation to several alternative techniques. A detailed simulation model was used for optimisation of directional stiffness, identification of vibration modes and minimising thermal stresses. A transmission matrix was developed in MS Excel to assess modal deflection for given ground vibration conditions. The spreadsheet gives an instantaneous yet comparable result to time consuming random vibration FE Analyses. The final engineering design of the supporting system is now complete and will also be described in this paper.
References
V. Parma, R. B. (2013). Status of the Superconducting Proton Linac (SPL) Cryomodule. SRF2013.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB100 Determining BCP Etch Rate and Uniformity in High Luminosity LHC Crab Cavities 635
 
  • T.J. Jones
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga, O. Capatina, L.M.A. Ferreira, R. Leuxe
    CERN, Geneva, Switzerland
  • T.J. Jones, J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S. Verdú-Andrés, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  The compact SRF Crab Cavities required for HL-LHC have complex geometries making prediction of average and local BCP etch rates a difficult task. This paper describes a series of experiments and simulations used to determine the etch uniformity and rate within these structures. An initial experiment was conducted to determine the correlation between etch rate and flow rate in a Nb tube. These results were then incorporated into Computational Fluid Dynamics simulations of acid flow in the Double Quarter Wave (DQW) cavity to predict etch rates across the surface and allow optimisation of the BCP setup. There were several important findings from the work; one of which is that the flow rate in the relatively large body of the cavity is predominantly driven by natural convection due to the exothermic reaction. During BCP processing of the DQW cavity a significant difference in etching was observed between upper and lower horizontal surfaces which was mitigated by etching in several orientations. Two DQW cavities manufactured by CERN have received a heavy BCP of 200μm followed by 2 light BCPs of 30μm each with subsequent vertical cold tests showing performance exceeding specification.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUPB100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXA03 Crab Cavities for the High-luminosity LHC 695
 
  • R. Calaga
    CERN, Geneva, Switzerland
 
  Funding: This work has been supported by the HL-LHC project (and by DOE or any other collaborating institutes, when applicable).
As a first step towards the realization of crab crossing for HL-LHC, two superconducting crab cavities are foreseen to be tested with proton beams for the first time in the SPS. The progress on the cavity fabrication, RF test results, cryomodule development and integration into the SPS are presented. Some aspects of the beam tests with crab cavities in the SPS are outlined.
 
slides icon Slides THXA03 [12.629 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-THXA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPB059 Simulation and Measurements of Crab Cavity HOMs and HOM Couplers for HL-LHC 881
 
  • J.A. Mitchell, T.J. Jones
    Lancaster University, Lancaster, United Kingdom
  • R. Apsimon, G. Burt, N.C. Shipman
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • I. Ben-Zvi, S. Verdú-Andrés, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
  • R. Calaga, A. Castilla, A. Macpherson, N.C. Shipman, A. Zwozniak
    CERN, Geneva, Switzerland
  • T. Powers, H. Wang
    JLab, Newport News, Virginia, USA
  • N.C. Shipman
    UMAN, Manchester, United Kingdom
 
  Two Superconducting Radio-Frequency (SRF) crab cavities are foreseen for the High Luminosity LHC (HL-LHC) upgrade. Preliminary beam tests of the Double Quarter Wave (DQW) crab cavity will take place in the Super Proton Synchrotron (SPS) in 2018. For damping of the cavity's Higher Order Modes (HOMs) the DQW has three identical on-cell, superconducting HOM couplers. The couplers are actively cooled by liquid heluim. In this paper, electromagnetic simulations of the HOMs and HOM couplers are presented. A novel approach to pre-installation spectral analysis of the HOM couplers is then presented, detailing both simulated and measured data. Measurements of the cavity HOMs at warm and in Vertical Test Facilities (VTFs) at both JLAB and CERN are detailed, comparing the measured characteristics of each mode to that of the simulated data-sets. Finally, the measured cavity data is compared with the test box measurements to see by what extent any reduction in damping can be predicted.  
poster icon Poster THPB059 [8.192 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-THPB059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)