

Achieving High Peak Fields and Low Residual Resistance in Half-Wave Cavities

Zachary A. Conway Argonne National Laboratory On Behalf of The Physics Division-Linac Development Group 17th International Conference on RF Superconductivity 16 September 2015

Acknowledgements

- Argonne National Laboratory Personnel:
 - P. Ostroumov, M. Kelly, Z. Conway, S. Gerbick, B. Guilfolye,
 C. Hopper, M. Kedzie, S.H. Kim and T. Reid.
- Many Vendors:
 - Advanced Energy Systems, NY.
 - Adron EDM, WI.
 - Numerical
 Precision, IL.
 - Meyer Tool and Manufacturing, IL.

162.5 MHz β = 0.11 Half-Wave Resonator (HWR)

48" (122cm)

HWR Cryomodule for PIP-II

A new half-wave resonator (HWR) cryomodule for FNAL's PIP-II project.

	Half-Wave Resonator	Requirement	
	Operating Voltage	2 MV/cavity	
	Operating Temperature	2.0 K	
	Maximum Dynamic Load	2 W/cavity	
HWR		2.2 m X	2.2 m X 6.2 m
17 th International Conference	e on RF Superconductivity	V. Yakovlev, TUAA05	

3

What goes into a half-wave cavity?

- The complex cavity system:
 - Beam physics design.
 - RF Performance.
 - Fabrication.
 - Polishing.
 - Cleaning.
 - Assembly.
 - Safety standards.

RF Performance:

- Maximize voltage gain.
- Low cryogenic load.
- Low peak surface fields.
- Design supports fabrication, processing and cleaning.

4

Fabrication

- Cavities are built largely in house with critical vendors.
- ANL does intermediate QA.
- EDM.
- Keyhole EB welding in all high-field regions.
- Significant hand polishing.

17th International Conference on RF Superconductivity

Electrostatic Discharge Machining

Cavity Polishing and Processing

- All polishing is done after fabrication is finished.
- Cooling water flow through space between helium jacket and Nb cavity.
- Unique Argonne Low-Beta Cavity EP Tool.
 - S.M. Gerbick et al, SRF'11.
 - M.P. Kelly et al, SRF'11.
- Successful many times with QWRs:
 - M.P. Kelly et al, SRF'13.

ANL-FNAL Collaboration on SRF

17th International Conference on RF Superconductivity

Hydrogen Degassing @ FNAL

Cold Test & Cooldown

- Cavity hung beneath a large helium reservoir.
- Silicon diodes are used for temperature measurement.
- Cavity cooled to 4 K with dewars.
 - Rapid cooling 165 50 K.
- Entire bath pumped to 2.0 K.

10

Concluding Remarks

- Highly optimized cavities.
 - RF Performance improved by increase volume over which the magnetic energy is distributed.
 - Including fabrication and processing.
- Constantly working to improve cavity fabrication and processing.
- High peak fields achieved.
 - Peak Electric > 70 MV/m.
 - Peak Magnetic Field no fundamental limit observed.
- Low residual resistance:
 - Low field 1.7 2.3 n Ω .
 - Full range 1.7 8 n Ω .
 - @ operating voltage of 2 MV/cavity 2.3 2.7 n Ω .
 - < 1 W into helium bath for E_{pk} = 45 MV/m and B_{pk} = 48 mT.