DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

PERFORMANCES OF SPIRAL2 LOW AND HIGH BETA CRYOMODULES

C. Marchand (CEA/IRFU) On behalf of GANIL, IPNO, Irfu and LPSC teams

1. The SPIRAL2 superconducting accelerator

2. Low and High β **Cavities and Cryomodules:**

Similarities and Differences

3. Cavity preparation and Cryomodule assembly

4. Cavities and Cryomodules performances

5. Status of Installation

DE LA RECHERCHE À L'INDUSTR

SPIRAL2 LINAC

Particles	H+	³ He ²⁺	D +	Ions	
Q/A	1	2/3	1/2	1/3	1/6 (opt.)
I (mA) max.	5	5	5	1	1
W _o max. (MeV/A)	33	24	20	15	9
CW max. beam power (KW)	165	180	200	44	48

SEPTEMBER 16, 2015

OF LA RECHERCHE À L'INDUSTRIE

CAVITIES DESIGN

	Cavities	Α	В
	# cavities	12	14
	\varnothing cavity [mm]	238	380
	\varnothing Beam tube [mm]	38	44
	f [MHz]	88.05	88.05
	β _{opt}	0.07	0.12
	Epk/Ea	5.36	4.76
	B _{pk} /E _{acc} [mT/MV/m]	8.70	9.35
	L _{acc} [m]	0.24	0.40
	<mark>V_{acc} @ 6.5 MV/m</mark> [MV]	1.55	2.66
	G [Ω]	22	37
$L_{gap} = \beta \lambda / 2$	r/Q [Ω]	600	515
¹ 110 mm A ¹ 190 mm B	Q₀ @ 6.5 MV/m (10W)	3.5 10 ⁸	1,4 10 ⁹

OF LA RECHERCHE À L'INDUSTR

CRYOMODULES LAYOUT

SIMILARITIES

- Pure Niobium
- QWR design
- 88.0525 MHz frequency
- 4,2 K liquid helium cooling
- Capacitive coupler 12 kW

Coupler installation on cavity in clean room

DIFFERENCES [1]: TANK & CAVITY BOTTOM

- Helium tank: A: Inox, B: Titane
- Bottom:

A: removable Cu bottom plate
→ easier HPR
B: fully welded Nb
→ minimize surface resistance

Cavity A

Indium seal

DIFFERENCES [2]: TUNING SYSTEM

Frequency tuning :

- \rightarrow Change cavity volume to tune frequency
- To compensate for slow cyclic helium bath pressure variations
- To compensate possible faster vibrations...
- Cavity A: mechanical system to deform cavity inside elastic limits
 - Tuning range: 13 kHz
- Cavity B: supraconductor plunger
 - Tuning range: 10 kHz

DIFFERENCES [3]: CAVITY ALIGNMENT

Cavity A

- Alignment inside warm CM during assembly using special fork
- Axis report on outside of CM for alignment on LINAC

removable fork

Cavity B

- Axis report by 3 targets remaining on cavity
- Alignment of cavity/CM when cold through CM windows

DIFFERENCES [4]: MAGNETIC SHIELD

 \rightarrow Attenuate by a factor ~50 V & H components of earth field

• CMA: « warm » Mu-metal, 1 layer, inside vacuum vessel

 CMB: « cold » Cryoperm, 2 layers, outside cavity, cooled with LHe

CAVITIES PREPARATION BEFORE TESTS IN VC

Cavities A&B

 Standard BCP etching HF,HNO₃,H₃PO₄: 1/1/2 (~150 μm)

100 bars HPR in ISO4 clean room

➢ No 100K healing

CAVITIES PREPARATION BEFORE TESTS IN VC

Cavities B

> 48 hours 120 C baking

After baking: losses divided by ~2 @ Eacc=6.5 MV/m **DE LA RECHERCHE À L'INDUSTR**

CRYOMODULES ASSEMBLY (CLEAN ROOM)

Cryomodules A: no HPR on cavities before CM assembly (slow venting to AP using filtered N2)

CRYOMODULES ASSEMBLY (CLEAN ROOM)

Systematic particle count of all parts assembled in clean room

CRYOMODULES ASSEMBLY (CLEAN ROOM)

Systematic particle count of all parts assembled in clean room

Cryomodules A: no HPR on cavities before CM assembly (slow venting to AP using filtered N2)

CRYOMODULES ASSEMBLY (OUTSIDE)

End of cryomodule assembly outside clean room

All cavities are above specifications with remarkably similar behavior after tests in vertical cryostat (preamble before assembly in cryomodules)

$$Q_0 = \frac{V_{acc}^2}{(r/Q)P_{CAV}}$$

- Vertical cryostat: P_{cav} = P_{RF}
- Cryomodule: P_{cav} = P_{tot} P_{stat}

measured via thermal losses @ 4K (A: He level decrease; B: gas flow)

Static losses Total losses @ 6.5MV/m & Eacc

\mathbf{Q}_{0}		СМА	СМВ
Specifications (10 W limit)		4,0E+08	1,4E+09
Computed (simulation codes)		7,6E+08	2,7E+09
Tests in VC @ 6.5 MV/m Deduced from RF losses	mean	5,8E+08	3,7E+0 9
Tests in CM @ 6.5 MV/m Deduced from therm. losses	mean	5,0E+08	3,0E+09

C. Marchand, SRF 2015, Whistler | PAGE 19

Frequency sensitivity to He bath pressure:

- Dependant on chemical etching intensity
- Matches specifications (< 8 Hz/mbar)
- Close to simulated values

Data	Value		СМА	СМВ
	Specifications		> - 8.0	> - 8.0
Pressure computed			- 2,5	- 7,0
sensitivity [Hz/mbar]	achieved in cryomodule	min	-2,9	- 7,3
		max	- 1,1	- 4,5
		mean	- 1,5	- 5 <i>,</i> 4

Tuning systems

- Effective tuning range:
 Low beta: 13 kHz; High beta: 10 kHz
- ✓ Hysteresis

Low beta: < 4 Hz (cavity bandwidth is 130 Hz) High beta: ~20 Hz (cavity bandwidth is 80 Hz)

Parameters (units)	СМА	CMB
(specs)		
Range (MHz)	In spec	In spec
(88.049-88.055)		
Sensitivity (kHZ/mm)	26.9±1.5	1.1
Hysteresis (Hz)	< 4	20±12
(<20)		

Frequency sensitivity to He bath pressure:

- Dependant on chemical etching intensity
- ✓ Matches specifications (< 8 Hz/mbar)
- ✓ Close to simulated values

Data	Value		СМА	СМВ
	Specifications		> - 8.0	> - 8.0
Pressure computed			- 2,5	- 7,0
sensitivity [Hz/mbar] ac cr	achieved in cryomodule	min	-2,9	- 7,3
		max	- 1,1	- 4,5
		mean	- 1,5	- 5 <i>,</i> 4

Hysteresis and « negative » backslash of the plunger <u>before</u> improvements

Hysteresis and « negative » backslash of the plunger <u>after</u> improvements

DE LA RECHERCHE À L'INDUSTRI

INSTALLATION STATUS: LBE + RFQ

DE LA RECHERCHE À L'INDUSTRI

INSTALLATION STATUS: SC LINAC

SEPTEMBER 16, 2015

DE LA RECHERCHE À L'INDUSTRI

INSTALLATION STATUS: SC LINAC

✤ CMA:

- ➢ 6/12 at GANIL
- ➢ 3/12 fully installed on LINAC
- One succesfull clean connection of one warm section to 2 successive CM

✤ CMB:

- > 7/7 at GANIL
- ➤ 4/7 fully installed on LINAC

 All 12 low β and 7 high β cryomodules assembled and RF and cryogenic performances measured

 Cryomodules and warm sections installation ongoing on LINAC

First beam out of RFQ : ~ November 2015

Job opportunities at CEA/Saclay for Postdocs in SRF

Please contact me: claude.marchand@cea.fr

THANKS FOR YOUR ATTENTION

And thanks to:

P.-E. Bernaudin G. Olry P. Bosland

Commissariat à l'énergie atomique et aux énergies alternatives	DSM
Centre de Saclay 91191 Gif-sur-Yvette Cedex	IRFU
	SACI

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019