

Status on the ADS SRF cavities

F. He

On behalf of W. Pan, Y. He, and colleagues in ADS joint SRF group Institute of High Energy Physics (IHEP) Institute of Modern Physics (IMP)

Outline

- Overview
- SRF Cavities for 325 MHz injector I at IHEP
- SRF Cavities for 162.5 MHz injector II at IMP
- SRF Cavities for 25MeV Demo-facility at IMP
- SRF Cavities for the future CIADS

SRF cavities overview

	Spoke 012	HWR 010	HWR 015	Spoke 021	Spoke 040	Ellip 063	Ellip 082	Spoke 024	HWR 325	CH 6cell
Freq. [MHz]	325	162.5	162.5	325	325	650	650	325	325	162.5
β ₀	0.14	0.10	0.15	0.24	0.46	0.82*	0.86	0.24	0.14	0.067
Aperture [mm]	35	40	40	40	50	100	100	40	35	50
E _p /E _{acc}	5.0	5.9	4.9	4.4	3.9	2.6*	2.1*	4.0	4.6	12.1
B _p /E _{acc} [mT/(MV/m)]	6.9	11.8	6.1	9.4	9.2	4.7*	4.1*	6.4	4.8	9.1
G [Ω]	43	28.5	52	71	104	193	236	81	73	62
R/Q [Ω]	150	148	286	191	265	304*	515*	206	197	544

Note: Eacc normalized with $\beta_0 \lambda$;

*: β_G is used instead of β_0

Outline

Overview

- SRF Cavities for 325 MHz injector I at IHEP
- SRF Cavities for 162.5 MHz injector II at IMP
- SRF Cavities for 25MeV Demo-facility at IMP
- SRF Cavities for the future CIADS

Design of the Spoke012 cavity

Designed Vacc ₀	0.80 [MV]
Ep at Eacc _o	29.3 [MV/m]
Bp at Eacc _o	41.6 [mT]
Dynamic loss [W]	<11.6/1.2 (4K/2K);
df/dp (tuner attached)	-25 [Hz/mbar]

Fabrication of the Spoke012 cavities

- Two qualified vendors provided 18 cavities; 6 more cavities from another two vendors were delayed.
- Fabrication process:
 - Deep drawing, annealing, machining, frequency control, grinding, EBW

SRF2015, Whistler, Sep 13-18, 2015

Quality control: frequency and surface

- Frequency sensitivity of trimming the central ring was calculated based on measured critical sizes.
- Defects were inspected and grinded before final EBW

Post processing of Spoke012 cavities

BCP in Ningxia OTIC; re-HPR and clean assembly in house

VT results of the spoke012 cavities

10¹⁰

ိ10⁶

10

٥

- MP conditioned in 1 hour with variable coupler
- Eacc increased by 2 MV/m with better cooling
- 120C baking applied to cavity string
- Will do more 2K tests when new dewar is ready

Spoke012 <4K VT results

1000000

Spoke012 cavities in the cryomodules

- Feb May 2015, two spoke cavities accelerated proton beam at 10 mA, 30~130 us, 1 Hz by 0.4 MeV
 - One tuner got stuck
 - Strong FE cracked ceramic window twice
 - Instability induced by piezo
- Improvements on CM1
 - New tuner design w/o piezo
 - Special gasket to protect window
 - 5.5 MV/m at 2K on beam line
- Further improvement for CM2:
 - New coupler assemble in cleanroom
 - New cryomodule

Outline

Overview

- SRF Cavities for 325 MHz injector I at IHEP
- SRF Cavities for 162.5 MHz injector II at IMP
- SRF Cavities for 25MeV Demo-facility at IMP
- SRF Cavities for the future CIADS

Design of HWR010 cavity

Nume Constant one Determined one Tatal Determined Million Water T New T Nex T New T

A DIRECTOR OF

STATES.

Designed Vacc ₀	0.78 [MV]
Ep at Eacco	25 [MV/m]
Bp at Eacc _o	50 [mT]
Dynamic loss [W]	<10 (4K);
df/dp (design)	-5 [Hz/mbar]

Fabrication of the HWR010 cavities

Cavities for all cryomodules have been finished by a single vendor

SRF2015, Whistler, Sep 13-18, 2015

Frequency control of HWR010 cavities

 Major source of frequency error were simulated and agreed well measurements

	Simulation	Measured	Error
Trimming sensitivity (MHz/mm)	-0.168	-0.171	1%
BCP (MHz/150um)	0.039	0.044	10%
Antenna inserted (MHz)	-0.0052	-0.0056	7%
Pumping w/o stiffener(MHz/bar)	110	94	14%
Tuning (MHz/mm)	0.18	0.17	5.5%
Cooling down (MHz)	0.24	0.26	7.6%

Post processing of HWR010 cavities

• Standard post-processing in house. EP facility is been built

S - 8

VT results of the HWR010 cavities

SRF2015, Whistler, Sep 13-18, 2015

HWR010 cavities in the cryomodules

- 2014.9 2015.2, , one HWR010 cavity was operated in TCM with CW proton for 200 hours (max 10mA). Q0 was 8e8 at specified Ep=25MV/m (max 30MV/m)
- Since 2015.6, 6 HWR010 cavities in CM1 reached 25MV/m, and accelerated 2.7mA CW beam to 5.2 MeV. The gradient degraded after exposed to air by accident.
- The tuner and coupler works very well

Outline

Overview

- SRF Cavities for 325 MHz injector I at IHEP
- SRF Cavities for 162.5 MHz injector II at IMP
- SRF Cavities for 25MeV Demo-facility at IMP
 - HWR015 cavity by IMP
 - Spoke021 cavity by IHEP
- SRF Cavities for the future CIADS

HWR015 design

- For higher efficiency and shorter length, one CM with 6 spoke021 cavities was replaced by a CM containing 5 HWR015 cavities.
- The shaped is optimized for much higher Vacc than HWR010.

Designed Vacc ₀ [MV]	1.82
Ep at Eacc ₀ [MV/m]	32
Bp at Eacc ₀ [mT]	40
Dynamic loss [W]	<10 (4K);
df/dp [Hz/mbar]	-5

HWR015 fabrication and VT

 Four HWR015 cavities from two vendors were VT; three were qualified, while one needs re-test

Spoke021 design

 The LHe vessel is without bellows, and it is optimized to compensate df induced by fluctuation of He pressure; the stiffness of the tuner also contribute to the results.

Designed Vacc ₀ [MV]	1.64
Ep at Eacc ₀ [MV/m]	32.5
Bp at Eacc ₀ [mT]	69
Dynamic loss [W]	<25 (4K)
df/dp [Hz/mbar]	+5
df/dL [kHz/kN]	47

Spoke021 testing results

- Eight spoke021 cavities from two vendors have been fabricated and tested
- Tuner test on the 1st jacked cavity is promising

Frequency [kHz] vs tuner force (80K)

Outline

Overview

- SRF Cavities for 325 MHz injector I at IHEP
- SRF Cavities for 162.5 MHz injector II at IMP
- SRF Cavities for 25MeV Demo-facility at IMP
- SRF Cavities for the future CIADS
 - Cavities for higher energy
 - Alternatives to the current cavities

Spoke040 and Ellip082 cavity by IHEP

- In current design, there will be 72 Spoke 040 cavities and 28 Ellip 082 cavities in the ADS linac
- Two Spoke040 cavities, and two Ellip 082 5cell cavities have been built

One Emploe					
	Spoke 040	Ellip 082			
Freq. [MHz]	325	650			
βο	0.14	0.86	∂ 1.E+09		
Aperture [mm]	35	100			
E _p /E _{acc}	5.0	2.1*	1 F+08		
B _p /E _{acc} [mT/(MV/m)]	6.9	4.1*	1.1.400		

SRF2015, Whistler, Sep 13-18, 2015

Radiation 3.33K

1.E+04

HWR325 vs Spoke012 by IHEP

- Possible for Ep
- MP conditioning harder
- Similar Eacc achieved at 4K as Spoke012 cavity

	Spoke 012	Ellip 082
Freq. [MHz]	325	650
β _o	0.14	0.86
Aperture [mm]	35	100
E _p /E _{acc}	5.0	2.1*
B _p /E _{acc} [mT/(MV/m)]	6.9	4.1*
df/dp [Hz/mbar]	-25	236

SRF2015, Whistler, Sep 13-18, 2015

Spoke024 vs Spoke021 by IHEP

- Surface field minimized
- Similar Eacc achieved at 4K on the 1st
 VT as Spoke021 cavity
- Stopped due to tight project schedule

	Spoke 021	Spoke 024	1.00E+10	Vertical test results of the IHEP Spoke024 cavities
Freq. [MHz]	325	325		4.2K, 2015/02/10
β _o	0.24	0.24		
Aperture [mm]	40	40	ි 1.00E+09	
E _p /E _{acc}	4.4	4.0		Target
B _p /E _{acc} [mT/(MV/m	n)] 9.4	6.4		
G [Ω]	71	81	1.00E+08	
R/Q [Ω]	191	206		Eacc [MV/m]

12

CH-6cell vs HWR010 by IMP

 To save space and elements like solenoid.

	HWR 010	CH 6cell
Freq. [MHz]	162.5	162.5
β ₀	0.10	0.067
Aperture [mm]	40	50
E _p /E _{acc}	5.9	12.1
B _p /E _{acc} [mT/(MV/m)]	11.8	9.1
G [Ω]	28.5	62
R/Q [Ω]	148	544
Vacc[MV]	0.78	1.56
L (beam axis,mm)	200	700

CH-6cell vs HWR010 by IMP (2)

Thanks for your attention!