

HIGH-VELOCITY SPOKE CAVITIES

Christopher Hopper

Center for Accelerator Science Old Dominion University now at Argonne National Laboratory

OVERVIEW

• Introduction

- History
- Features of the spoke geometry

• High-velocity spokes

- Applications
- Electromagnetic Optimization
- Multipacting
- Processing
- To date test results
- Concluding remarks

HISTORY

- Developed at ANL in the late 1980s along with the half-wave resonator
- From the early 1990s to early 2000s, single- and multi-spoke development mostly at ANL, LANL, and IPN
- The last decade has seen a significant increase in developing low- and mediumvelocity cavities around the world
- Spoke cavities are now a popular option for the medium-velocity region and several projects are underway for the high-velocity region

Frequency (MHz)	β	
325	0.22*, 0.51*	
352	0.15*, 0.35*, 0.50*	
325	0.12*, 0.21*, 0.4*, 0.52	
325	0.3	
219	0.303	
350	0.175*, 0.21*, 0.48, 0.64	
850, 345	0.30*, 0.4*, 0.5*, 0.63*	
760, 352	0.2*, 0.48*	
	Frequency (MHz) 325 352 325 325 219 350 850, 345 760, 352	

*Fabricated and tested, yellow = in progress

¹⁹⁹⁰⁻ ANL 850 MHz, β =0.3

FEATURES OF SPOKE CAVITIES

- Relative compactness
 - Between 20% 50% smaller (radially) than a TM cavity of the same frequency
- Strong cell-to-cell coupling
 - Robust with respect to manufacturing inaccuracy
 - Less need for field flatness tuning
 - No LOMs, closest mode well separated

Coupling by magnetic field

FEATURES OF SPOKE CAVITIES

• Low energy content, high shunt impedance

 Couplers located on outer conductor rather than in beamline space

Mechanical rigidity

MINION

HIGH-VELOCITY APPLICATIONS

- Compact light sources (MIT, JLab, ODU, FREIA, JAEA)
 - 4-5 m long cw linac to accelerate electrons from a few MeV to tens of MeV
 - Lower frequency allows for 4.5 K operation
 - No sub-atmospheric cryogenic system

- High energy proton/ion linacs
 - Taking advantage of large velocity acceptance and fewer frequency transitions
 - − ODU 325 MHz, $β_0$ = 0.82 double-spoke cavity: V_{acc}/V_{max} > 96% for 0.74 ≤ β ≤ 0.92 (460 MeV to 1.5 GeV for protons)
- ERL combined with laser Compton scattering for non-destructive assay system for nuclear materials in spent fuel (JAEA)

PROPOSED PROJECTS

	Particle	Cavity type		
MIT/JLab	electron	352 MHz, $\beta_0 = 1$ double-spoke		
ODU*	electron	500 MHz, $\beta_0 = 1$ double-spoke		
ODU*	proton/ion	325 MHz, $\beta_0 = 0.82$ single-spoke		
FREIA	electron	352 MHz, $\beta_0 = 1$ double-spoke		
JAEA	electron	325 MHz, $\beta_0 = 1$ single-spoke		
Niowave*	electron	700 MHz/350 MHz β_0 = 1 double-spoke		

*Fabricated and tested, yellow = in progress

• N-parameter optimization is non-trivial

Epeak/Eacc

Multi-objective optimization, M. Sawamura et al. SRF 2011 T. Kubo et al. LINAC 2014

- 325 MHz, β_0 = 1.0 optimized results from two methods:
 - Ep/Eacc = 3.7 (ODU), 3.7 (KEK)
 - Bp/Eacc = 7.1 (ODU), 7.5 (KEK)
 - R/Q = 737 (ODU), 691 (KEK)

C.S. Hopper and J.R. Delayen, PRSTAB, 16, 102001, (2013).

also see N. Solyak et al. SRF 2009

PREDICTION OF MULTIPACTING

Multipacting activity predicted below 2.5 MV/m using Track3P. First test verified this. Easily processed.

C.S. Hopper and J.R. Delayen, LINAC 2012 C.S. Hopper et al. LINAC 2014 K. Ko et al., LINAC 2010

325 MHz, β₀ = 1 (CST PS) T. Kubo et al., IPAC 2015

DMINION

CAVITY PROCESSING

Processing Steps:

- 120-150 µm bulk BCP (at Niowave and Jlab)
- 600 °C, 10 hr H degassing (Fermilab and Jlab)
- 10-30 µm light BCP
- HPR (Jlab)
- Class 10 cleanroom assembly (Jlab)
- 120 °C, 48 hour bake

500 MHz, , β_0 = 1 double-spoke

325 MHz, β_0 = 0.82 single-spoke

CAVITY PERFORMANCE (4 K)

Frequency	500 MHz (ODU)	325 MHz (ODU)	700 MHz (Niowave)	350 MHz* (Niowave)		
4 K						
V_{acc} [MV]	2.7	9.1	3.2	8.7		
E_{acc} [MV/m]	4.5	12	5.0	6.8		
E_p [MV/m]	17	43	22	34		
B_p [mT]	34	72	39	55		

*During pulsed operation

- 500 MHz double-spoke cavity was limited by TB
- 325 MHz single-spoke cavity improved significantly after helium processing
- No hard quenches seen in either of the Niowave double spokes- ultimate performance not yet reached

C.S. Hopper et al. LINAC 2014 T. Grimm et al. FEL 2013

CAVITY PERFORMANCE (2 K)

- Spoke cavities have been developed, fabricated, and tested for more than 25 years and now span $\beta < 0.2$ to $\beta = 1$.
- For certain high-velocity applications, spoke cavities are currently the best available technical option.
- Electromagnetic optimization is non-trivial and consideration of fabrication, handling, and processing is essential throughout the process. Like other TEM-class cavities, there are some challenges, but no showstoppers.
- Multipacting is part of the TEM structure experience. During our tests, it was easily processed and did not recur.
- High-velocity spoke cavities have been fabricated and tested. To date, the results are promising...

ACKNOWLEDGEMENTS

- ODU Jean Delayen, Subashini De Silva, Alex Castilla, HyeKyoung Park, Rocio Olave, Kevin Mitchell, Kirsten Deitrick
- JLab HyeKyoung Park, Tom Powers, Kirk Davis, Joe Preble, Bill Clemens, Pete Kushnick, Frank Marhauser, Haipeng Wang, and John Mammoser
- SLAC Zenghai Li and Lixin Ge
- Niowave Terry Grimm, Dmitry Gorelov, Chase Boulware, Tyler Lamie, Brett Kuhlman, and Christine Krizmanich
- FNAL Margherita Merio, Mayling Wong, Allan Rowe
- LANL Frank Krawczyk

