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Many features in QvsE curves

� Complex theory required to describe RF
properties of superconductors

� Systematic test of theory difficult

How does ideal experiment look like?

� Small and flat samples, easy to change

� Measure RF losses in large parameter space:
� Wide temperature range, high RF field
� Multiple frequencies (not too high)
� Control over ambient magnetic field and

cooling conditions

� Penetration depth, critical field, RRR, heat
conductivity

Doped/ Undoped bulk niobium 1

Nb3Sn
2

1P. Dhakal et al., “Enhancement in Quality Factor of SRF Niobium Cavities by Material
Diffusion”.

2Posen and Liepe, “Nb3Sn - Present Status and Potential as an alternative SRF Material”.
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Niobium cavity for sample testing pioneered at CERN in late 1990’s. 1

Strong focusing of magnetic fields on sample surface allow measurement of RF
losses

Advantages

� Sample thermally decoupled from resonator
and helium bath

� Calorimetric measurement → high resolution

� Measurements at 400, 800 and 1200 MHz

� Penetration depth and critical field
measurements possible

Disadvantages

� Large sample (75mm), difficult to change

� Inhomogenous field on sample surface, 〈Rs〉
measurement
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1Haebel, Brigant, and Mahner, “The Quadrupole Resonator, Design Considerations and Layout
of a new Instrument for the RF Characterization of Superconducting Surface”.
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Quadrupole Resonator



CERN geometry adapted to include 1300 MHz mode used as baseline,
Aim of optimization:

� Increase measurement range:

→ Decrease peak field ratios Epk/Bsmpl and Bpk/Bsmpl

� Improve measurement resolution:

→ Increase focussing of magnetic fields on to sample: c =
∫
Smpl|H|

2dA

U

Baseline Optimized

c 5.15 · 107 A2/J 11.2 · 107 A2/J
Epk/Bsmpl 0.21 (MV/m)/mT 0.13 (MV/m)/mT
Bpk/Bsmpl 1.23 1.12

1st Mechanical mode 69 Hz 120 Hz

Comparison figures of merit 1

1Kleindienst, Knobloch, and Kugeler, “Development of an Optimized Quadrupole Resonator at
HZB”.
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RF optimization



HZB QPR built by Niowave

� RRR300 fine-grain Niobium

� Mechanical design simplified, wall
thickness 2 mm

Surface finishing at JLab:

� 150µm BCP,

� 600 ◦C bake for 12 hours

� High Pressure Rinse, 55 bar jet
shooting upwards through the rods
from the below the loops

� 20µm light - BCP

� 120 ◦C bake for 48 h

5

Production
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QPR at HZB



Large grain RRR 300 Niobium sample (undoped) with 120° bake.
Surface resistance measured against field at 416 MHz .

� RF losses measured at various temperature with fields up to > 100 mT

� Decreasing surface resistance at medium fields for low temperatures

� Plotting against temperature yields consistent residual resistance around
7.5 nΩ
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Characterization Niobium Sample



Temperature Gradient

� Heater and RF field generate
different temperature gradient

� Changing RF field changes
temperature gradient

� Different temperature gradient leads
to different losses
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Copper solenoid and magnetometer
mounted within calorimetry chamber

� Sample heated above critical
temperature, cooled down with
applied field

� Cooling rate during transition can be
controlled

� Trapped flux increases residual
resistance
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Trapped Flux Measurement
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Critical Field

� RF pules with very low duty cycle
and increasing field applied

� Fit data to extract BC ,RF and TC

BC = BC (0)
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Penetration depth

� Measure resonance frequency while
changing temperature of sample

� Slater Theorem and geometry factor
of sample relates ∆f to ∆λL

� Fit with Gorter Casimir expression to
obtain λ0 and TC
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QPR system at HZB commissioned:

� Field limit at 120 mT on sample
surface

� Detailed characterization of large
grain niobium sample

Upgrades and improvements planned:

� Add additional frequencies 850 MHz
and 1300 MHz

� Ring shaped heater to minimize
temperature gradient

� New sample chambers with
demountable sample S.Keckert, TUPB067

Measurements comparing doped/undoped niobium planned

11
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