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Introduction

Many features in QvsE curves

e Complex theory required to describe RF
properties of superconductors
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e Systematic test of theory difficult
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How does ideal experiment look like?

Doped/ Undoped bulk niobium 1
e Small and flat samples, easy to change

o Measure RF losses in large parameter space:

e Wide temperature range, high RF field "
e Multiple frequencies (not too high) o
e Control over ambient magnetic field and o e
cooling conditions = e
o Penetration depth, critical field, RRR, heat ;Mﬁ_i
conductivity S e fum Ed
Nb3Sn 2

'P. Dhakal et al., “Enhancement in Quality Factor of SRF Niobium Cavities by Material
Diffusion” .
Posen and Liepe, “Nb3Sn - Present Status and Potential as an alternative SRF Material”.



Quadrupole Resonator

Niobium cavity for sample testing pioneered at CERN in late 1990’s. !

Strong focusing of magnetic fields on sample surface allow measurement of RF
losses

Advantages

e Sample thermally decoupled from resonator
and helium bath

Fixtures

o Calorimetric measurement — high resolution
e Measurements at 400, 800 and 1200 MHz Nb Resonator

e Penetration depth and critical field
measurements possible

Disadvantages

. Temperature
o Large sample (75mm), difficult to change sensor
Heater

¢ Inhomogenous field on sample surface, (Rs)
measurement

Calorimetry
Chamber

lHaebeI, Brigant, and Mahner, “The Quadrupole Resonator, Design Considerations and Layout
of a new Instrument for the RF Characterization of Superconducting Surface”.



CERN geometry adapted to include 1300 MHz mode used as baseline,
Aim of optimization:

e Increase measurement range:
— Decrease peak field ratios Evk /B, and Bek/B

e Improve measurement resolution:

. . o JsmplHPdA
— Increase focussing of magnetic fields on to sample: ¢ = =5 ——
Baseline Optimized
c 5.15-10" A?/]J 11.2-10" A%/J
Epk /Bampl 0.21(MV/m)/mT 0.13(MV/m)/mT
Bok /Bompl 1.23 1.12
15% Mechanical mode 69 Hz 120 Hz

Comparison figures of merit 1

Kleindienst, Knobloch, and Kugeler, “Development of an Optimized Quadrupole Resonator at
HZB".



HZB QPR built by Niowave

¢ RRR300 fine-grain Niobium

e Mechanical design simplified, wall
thickness 2 mm

Surface finishing at JLab:
e 150 um BCP,
e 600 °C bake for 12 hours

e High Pressure Rinse, 55 bar jet
shooting upwards through the rods
from the below the loops

e 20 um light - BCP
e 120°C bake for 48h




QPR at HZB




Characterization Niobium Sample

Large grain RRR 300 Niobium sample (undoped) with 120° bake.
Surface resistance measured against field at 416 MHz .

o RF losses measured at various temperature with fields up to > 100 mT

e Decreasing surface resistance at medium fields for low temperatures

¢ Plotting against temperature yields consistent residual resistance around
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Potential error source

Temperature Gradient
o Heater and RF field generate
different temperature gradient
e Changing RF field changes
temperature gradient

o Different temperature gradient leads Nb rods

to different losses
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Potential error source

Temperature Gradient

o Heater and RF field generate
different temperature gradient

e Changing RF field changes
temperature gradient

o Different temperature gradient leads Nb rods
to different losses
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Potential error source

Temperature Gradient

o Heater and RF field generate
different temperature gradient

e Changing RF field changes
temperature gradient

o Different temperature gradient leads Nb rods
to different losses
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Ring shaped heater (no temperature gradient) required



Trapped Flux Measurement

Copper solenoid and magnetometer
mounted within calorimetry chamber

e Sample heated above critical
temperature, cooled down with
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e Sample heated above critical
temperature, cooled down with

-
%)

applied field
pPp o 400
e Cooling rate during transition can be S -
2
£ i
controlled s 300 2
. . 2
e Trapped flux increases residual ;i . &
. 200 £
resistance & g
] o0
= 4 g
é Heater on 100
w0
2
0
0 100 200 300
Time [s]




Trapped Flux Measurement

Copper solenoid and magnetometer
mounted within calorimetry chamber

e Sample heated above critical
temperature, cooled down with

-
%)

applied field —_—
o ? 400
e Cooling rate during transition can be S Iu\\ -
I Heater
controlled 25 300>
g Z
e Trapped flux increases residual é’. . &
H 200 -2
resistance & s
] o0
B 4 g
g Heater 100
= eater on .
@0 Coil on
2
0
0 100 200 300
Time [s]




Trapped Flux Measurement

Copper solenoid and magnetometer
mounted within calorimetry chamber

e Sample heated above critical
temperature, cooled down with

. . 12
applied field —
E 1\ Heater off 400
e Cooling rate during transition can be S Decreasd -
I Heater
controlled 25 300>
g Z
e Trapped flux increases residual é’. . &
H 200 -2
resistance & s
] o0
B 4 g
g Heater 100
= eater on .
@0 Coil on
2
0
0 100 200 300
Time [s]




Trapped Flux Measurement

Copper solenoid and magnetometer
mounted within calorimetry chamber

e Sample heated above critical
temperature, cooled down with

. . 12
applied field ——H\ 100
. . . < Heater off
e Cooling rate during transition can be S DecreaN \ | ol off -
I Heater
controlled 25 300>
g Z
e Trapped flux increases residual é’. . &
H 200 -2
resistance & s
o0
%, 4 Residual ﬁ
£ Heater on ~ Fid 100
mﬂ‘ Coil on
2 / Dy —
0 100 200 300 0
Time [s]




Trapped Flux Measurement

Copper solenoid and magnetometer
mounted within calorimetry chamber

e Sample heated above critical
temperature, cooled down with

. . 12
applied field —
E Heater off \ 400
e Cooling rate during transition can be S Decreasd Cotloff|
I Heater
controlled 25 300>
g 3
e Trapped flux increases residual é’. . &
H 200 -2
resistance & s
] o0
2 4 Residual ﬁ
§ Heater on Field 100
@0 Coil on
2 ET_
AB| 0
0 100 200 300
Time [s]




Trapped Flux Measurement

Copper solenoid and magnetometer
mounted within calorimetry chamber

e Sample heated above critical
temperature, cooled down with
applied field

e Cooling rate during transition can be
controlled

e Trapped flux increases residual
resistance
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Further Measurements

Critical Field

o RF pules with very low duty cycle
and increasing field applied

e Fit data to extract B¢ rr and T¢

Bc = B(0) (1 - (Tlc)z)

BEF = 231mT
Te = 9.23K
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Further Measurements

Penetration depth

Critical Field e Measure resonance frequency while

. changing temperature of sample
e RF pules with very low duty cycle

and increasing field applied e Slater Theorem and geometry factor

. of sample relates Af to A\,
e Fit data to extract B¢ rr and T¢

e Fit with Gorter Casimir expression to
obtain Ao and T¢

Be = 5c(0) (1- (1))

Ao
A(T) = ey
1-(T/Tc)
120 BEF = 231mT 200
g 100 Tc = 9.23K *
3 % 150 Ao ¢ 50.62nm
= . Te : 9.20K
]
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Conclusion/Outlook

QPR system at HZB commissioned:
o Field limit at 120mT on sample
surface

o Detailed characterization of large
grain niobium sample
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sample surface I height: 12 mm
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Conclusion/Outlook

QPR system at HZB commissioned:

e Field limit at 120mT on sample
surface

e Detailed characterization of large
grain niobium sample

Upgrades and improvements planned:

e Add additional frequencies 850 MHz
and 1300 MHz

e Ring shaped heater to minimize
temperature gradient

o New sample chambers with
demountable sample

sample surface I height: 12 mm
sample holder dlameter: 75 mm

(niobium)

niobium tube ——>
indium wire
bottom flange gasket
(double sided CF100,

stainless steel)

S.Keckert, TUPB067

Measurements comparing doped/undoped niobium planned
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