Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Medium Field Q-Slope in Low β Resonators

Zhongyuan Yao on behalf of SRF group, TRIUMF *SRF2015, Whistler, BC*

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

ISAC Facility

September 16, 2015

1.3GHz Development

Low β Resonators

- 4K reduce cryogenics system cost for low frequency applications.
- Strong Medium Field Q-Slop (MFQS) exists in low frequency and low β resonators.
- Presently facilities are choosing to operate at 2K even at low frequency to avoid MFQS, such as FRIB and RISP.
- 120°C bake improves 4K Q in medium field. (SPIRAL-II and FRIB)
- MFQS and improving 4K performance need to be further understood.

FRIB 80.5MHz β=0.085 QWR 10^{10} Q_{0} 10^{9} 3.85 Watts B- ReA6 phase 1 Cavity #1 (2K) - ReA6 phase 1 Cavity #1 (4K) FRIB GOAL 2.0 K 10^{8} 2 10 12 4 6 8 0 E_{acc} (MV/m)

K. Saito, 'FRIB Project: Moving to Production Phase', This conference.

RISP Coaxial Resonators

- 81.25MHz QWR and 162.5MHz HWR designed by RISP.
- Cavity treatments
 - 120µm BCP (+15µm for HWR)
 - HPR
 - 48hr 120°C bake
- Cavities were tested before and after bake.

	QWR	HWR	Unit
Frequency	81.25	162.5	MHz
β	0.047	0.12	1
L _{eff} =βλ	0.173	0.221	m
E_{peak}/E_{acc}	5.3	5.6	1
B_{peak}/E_{acc}	9.5	8.2	mT/MV/m
G	21	40	Ω
U/E _{acc} ²	0.126	0.159	J/(MV/m) ²

QWR BCP Result

QWR Comparison

HWR Comparison

4K to 2K

BCS Resistance

Quadratic Dependent R_{BCS}

 $R_{BCS} = R_{BCS0} (1 + \gamma (\frac{B_p}{B_c})^2)$

	R _{BCS0} @ 4K	γ
	nΩ	1
QWR BCP	3.70	64.2
QWR Bake	2.69	15.8
HWR BCP	13.03	36.7
HWR Bake	7.53	14.3

- Bake reduced R_{BCS0} and field dependent coefficient.
- Field dependence is quadratic for B_{peak}<40mT.
- Slope is stronger than quadratic at the field of >60mT.

BCS Resistance

Energy Gap

$$R_{BCS0} = A^* \frac{f^2}{T} e^{-\frac{\Delta}{k_B T}}$$

Δ meV	QWR	HWR
BCP	1.35	1.49
Bake	1.67	1.73

- Field dependence of energy gap is not obvious in low and medium field.
- Bake increased average value of energy gap by about 20%.

10

20

30

40

Bpeak/mT

50

60

70

80

٥

Fitting Parameter A*

 $R_{BCS0} = A^* \frac{f^2}{T} e^{-\frac{\Delta}{k_B T}}$

A *		HWR
nΩ·K/MHz²	QWR	
BCP	0.110	0.128
Bake	0.133	0.155

 Bake effect for A* is not obvious with these two data set. The differences are within error bars.

Residual Resistance

Linear Dependent R_{res}

 $R_{res} = R_{res0} + R_{res1} \left(\frac{B_p}{B_c}\right)$

	R _{res0}	R _{res1}	
	nΩ	nΩ	
QWR BCP	2.09	9.76	
QWR Bake	3.07	15.1	
HWR BCP	12.6	23.5	
HWR Bake	13.2	31.9	

- Bake increased R_{res0} and field dependent slope.
- High R_{res} of HWR is suspected due to cool down procedure and trapped flux.
- R_{res1} is proportional to frequency within error bar.

QWR 4K Q-Slope

18

Multi-modes Test Resonators

Motivation

- Systemic study tools for field and frequency dependent surface resistance.
- Coaxial geometry that is common for low β resonator.
- 'Single cell' for low β resonators.
- Resonator Design
 - Resonance frequency
 - Integer harmonics of 200MHz
 - Field optimization
 - Uniform field distribution for different modes
 - Good access for processing and cleaning
 - Fit RF induction oven for heat treatment and doping study

Summary

- Preliminary MFQS study on low β resonator with measuring cool down Q data at various field level.
- 120°C bake improved 4K performance in medium field for both RISP QWR and HWR by reducing R_{BCS0} and field dependent coefficient. On the opposite side, bake increased R_{res}.
- With our data, field dependent component of BCS resistant is shown to be quadratic, and residual part is linear field dependent.
- More tests and data are required to have an insight of MFQS for low β resonators.
- More treatments will be studied, such as HF rinse after bake, heat treatments, and doping.
- This is just a beginning.

September 16, 2015

Acknowledgment

- This study grew out of our collaboration with RISP during the qualifying tests of their prototype cavities at TRIUMF.
- We thank them for the opportunity to extend the study to explore medium field Q-slope.
- Thanks to David Longuevergne for useful discussion.

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

	R _{res0}	R _{res1}	errR _{res1}
	nΩ	nΩ	
QWR BCP	2.09	9.76	1.83
QWR Bake	3.07	15.1	0.73
HWR BCP	12.6	23.5	7.50
HWR Bake	13.2	31.9	2.54
	f _{HW}	_R /f _{QWR}	R _{res1_HWR} /R _{res1_QWR}
BCP		2	2.12 ± 0.20
Bake		2 2.40 ±	

Geometry Factor

	QWR	HWR
β ₁	0.68	0.71
β ₂	0.53	0.58

From $R_s(B_p)$ to $R_s(B)$

$R_{res} = R_{res0} +$	$R_{res1}(\frac{B_p}{B_c})$		$R_{res} = R_{res}$	$R_{res1}^* (\frac{B}{B_c})$	
$R_{BCS} = R_{BCS0}(1 + \gamma (\frac{B_p}{B_c})^2)$			$R_{BCS} = R_{BCS0}(1 + \gamma^* (\frac{B}{B_c})^2)$		
	R _{res1}	R _{res1} *	γ	γ*	
	nΩ	nΩ	1	1	
QWR BCP	9.76	14.4	64.2	121.6	
QWR Bake	15.1	22.2	15.8	29.9	
HWR BCP	23.5	32.9	36.7	63.6	
HWR Bake	31.9	44.7	14.3	24.8	