

On the Understanding of the Q-Slope of Niobium Thin Films

<u>S. Aull</u>, T. Junginger, J. Knobloch, A. Sublet, A.-M. Valente Feliciano, W. Venturini Delsolaro, P. Zhang

No thermal runaway

No magnetic shielding

SOB 2 1 10 100 RRR

Minimize BCS losses

Save on raw material

Nb/Cu Technology

No magnetic shielding

Save on raw material

Niobium Film Technology

CER

WHERE ARE WE TODAY?

Nb/Cu Technology for HIE Isolde

See also TUPB027

Quarter-wave Resonator

Frequency	101 MHz
E _{acc}	6 MV/m
G	30.7 Ω

Mockup cavity for coating samples comparable to cavity coatings

15/09/2015

sarah.aull@cern.ch

Microstructure and RF Performance

Standard coating bias (-80 V)

See also TUPB027

High coating bias (-120 V)

High coating bias (-120 V)

Very dense film but delamination due to high stress in the film

sarah.aull@cern.ch

Sample Preparation

See also TUPB029

RF cold test in CERN's

Quadrupole Resonator

Mechanical polishing & 12 μm EP

Nb coating at JLab

Electron beam welding & Ultra-pure water rinse

Microstructure of the Nb/Cu Sample

Grain size copied from Cu substrate (~ 50 μm)

No visible porosity Smooth interface

15/09/2015

sarah.aull@cern.ch

Crystal Structure of the Nb/Cu Sample

- Grain size copied from substrate (~ 50 μm)
- Dense film
- Smooth interface
- No visible porosity

15/09/2015

Cu

5 µm

Constitution of Constant

FRI

Crystal Structure of the Nb/Cu Sample

15/09/2015

CERN

SC Properties

	Nb/Cu	bulk Nb	
Penetration Depth $\lambda(0K)$ [nm]	37 ± 2	39 ± 2	
Mean free path [nm]	182 ± 24	126 ± 18	
RRR	67 <u>+</u> 9	47 ± 7	
$R_{ m res}$ (400 MHz)[n Ω]			
Energy gap $^{\Delta}/_{kT_c}$	Nb film has bulk-like properties		

Q-Slope: Film vs Bulk

sarah.aull@cern.ch

Q-Slope: Film vs Bulk

Trapped Flux Sensitivity

Trapped Flux Sensitivity

Nb/Cu film is still less sensitive to trapped flux.

Trapped flux sensitivity depends on RRR, frequency and pinning centre size.

Low trapped flux sensitivity is consistent with bigger pinning centres.

See also TUPB077

Residual resistance increase by 30 n Ω can not be explained with flux expulsion efficiency.

Nb/Cu seems to be much more sensitive to thermo-electric currents due to the bi-metal interface.

Effect of Thermal Cycling on Q-Slope See also TUPB077

Thermal cycling also acts on the Q-Slope.

We have a bulk-like Nb/Cu film...

with a Q-Slope comparable to bulk niobium at 4 K still less sensitive to trapped flux

severely affected by thermal currents?

sarah.aull@cern.ch

The trapped flux sensitivity depends on operation frequency, RRR and flux trapping efficiency.

http://arxiv.org/abs/1507.04105