

Recent Developments in Vertical Electropolishing

(Paper Id:THBA02)

17th Sep 2015

SRF 2015, Vancouver, Canada

By

V Chouhan

Marui Galvanizing Co., Ltd & KEK, Japan

Y Ida, K Ishimi, K Nii & T Yamaguchi (Marui Galvanizing Co., Ltd., Japan) H Hayano, S Kato, H Monjushiro, T Saeki & M Sawabe (KEK, Japan)

Outline

- HEP vs VEP
- Advantages and problems in VEP
- Progress in VEP at Marui & KEK
 - VEP setups
 - Cathode shape
 - VEP parameter optimization to solve the problems
- Summary

Horizontal vs Vertical EP Setups

HEP Setup at KEK

HEP	VEP
Complicated setup	Simple setup
Need rotation of a cavity	No cavity rotation
Sealing of rotating bodies	No sealing as no rotating body
Mechanism to make EP bed vertical for acid and water drainage	Already vertical
Large space	Comparatively small space
High Cost	Comparatively low cost

VEP Setup at Saclay

Advantages of VEP setup attract us to use VEP for cavity surface treatment. 3
 V Chouhan, MGI (17 Sep 2015)

Issues with VEP

- Longitudinal Asymmetry in Polishing
- Top iris is always found with the highest removal of Nb. A removal thickness on the top iris remains ~3 times higher than that of the bottom iris.
- This might cause degradation of field flatness.

Bubble Traces

- Top iris surface is always found with bubble traces after VEP.
- This might limit cavity performance specially for multi-cell cavities.

Efforts in other Labs to Solve the Issues

Flipping of Cavity

- To minimize asymmetry of Nb removal, cavity can be flipped to repeat VEP.
- Requires long time and may not suitable for mass production.
- Cathode shape & Acid flow rate
 - As reported by Saclay and other labs, asymmetry might be due to high acid flow on the upper half cell. Cathode shape might improve acid flow in cavity cell.
- Agitation
 - Cornell used paddles to stir EP acid. Some effect of the paddle was noticed on the top iris. However this could not solve the problem of inhomogeneous removal.

Bubble Bag

 Bubble bag for cathode can help to guide bubbles to reduce bubble traces. Bubble bag is being used in VEP setup at Cornell.
 V Chouhan, MGI (17 Sep 2015)

1-cell Cavity Performance (Saclay VEP)

DESY

Group Meeting (April 16th 2013)

- 1DE1: Horizontal EP + 70 µm VEP
- Parameters: 6V & >24L/min
- Bright and smooth surface
- Performance before/after baking similar to HEP
- High gradient maintained after VEP

1DE1 after HEP + 70 µm VEP

Aspects to improve:

- Low removal rate at 19°C: 0.2µm/min
- asymmetry: removal rate higher in the upper part of the cell (x 3)

Acid flow

9-cell Cavity Performance (Cornell VEP)

We, in collaboration with KEK, are developing VEP facility and optimizing VEP parameters, cathode design to solve the existing problems in VEP.

Our Joint Collaborations

• Marui-KEK-Saclay (Dr. F. Eozenou at Saclay)

Cavity performance is tested at Saclay.

- Marui-KEK-Cornell University (Dr. F. Furuta at Cornell University)
 - Our unique cathode (Ninja cathode) will be tested at Cornell University.

VEP Setups at Marui

1-cell Cavity

9-cell Cavity

Solution Soluti Solution Solution Solution Solution Solution Solution So

Coupon Cavity & Ninja Cathode

- Cavity contains 6 coupons at beam pipes, irises and equator.
- EP current can be measured for individual coupon.
- Coupon surfaces are analyzed with several surface analytical tools.
- The cavity is having 4 view ports on the top iris, bottom iris and equator for light introduction and insitu observation of cathode wings and H₂ bubbles.
- Ninja cathode was developed in order to agitate EP acid and to use its wings as cathode.

Cause of Asymmetry (Lab EP)

Lab EP experiments were carried out in order to understand cause of asymmetry.

- H₂ bubbles enhance EP rate for higher removal thickness.
- Similar EP currents for both the bottom samples shows that gravity effect is not strong to cause asymmetry.
- Long residence time of bubbles on Nb surface results in a rough surface.

Solution of Inhomogeneous Removal in Lab EP

Stirrer was set in front of samples and effect of different speeds was observed.

- Similar removal thicknesses and surfaces of samples were obtained.
- At the high rotational speed:
 - bubbles cannot stay on surface
 - uniform acid flow might make uniform thickness of viscous layer on Nb samples

12

V Chouhan, MGI (17 Sep 2015)

Effect of Stirring in VEP

- The top iris coupon current was the highest at 1 rpm because of accumulation of H₂ bubbles on the top iris.
- Ninja cathode rotating at 50 rpm displaced the bubbles from the top iris to make similar polishing rate in the cavity cell.
 V Chouhan, MGI (17 Sep 2015)

Effect of Partial Cathode Wings

- H₂ bubbles can screen the cathode and reduce ion migration to the cathode.
- A distance between anode and cathode might be important for small area of cathode.
- Electric field on equator might be low due to large distance from cathode.
- Wing cathode might enhance ion transportation and electric field on equator surface.

V Chouhan, MGI (17 Sep 2015)

Removal Thickness W/O and W/ Wings

♦ Removal thickness was measured with ultrasonic thickness gauge.

Ninja wings were found to be effective as a stirrer in order to minimize longitudinal asymmetry of Nb removal.

V Chouhan, MGI (17 Sep 2015)

Surfaces of Coupons

- Rough equator surface of equator with rod cathode and insulating wings might be due to polishing in etching region. (Since equator remains in etching region at applied voltages.)
- Ninja with partial metal wings resulted in smooth surface of the equator.

Summary

- VEP setup has several advantages over HEP setup and can reduce cost of cavity surface treatment.
- Encouraging results of VT for 9-cell and 1-cell cavities were shown by Cornell and Saclay.
- However inhomogeneous removal (higher removal of upper half cell) of a cavity was still unresolved and flipping is done to minimize asymmetry.
- Ninja cathode improved homogeneity of Nb removal and resulted smooth surface of the cavity cell.

Future Work

- Further improvement is possible in VEP parameters and Ninja cathode to achieve perfect homogeneous removal with smooth surface of single/multi cell cavities.
- VT for 1-Cell Cavity will be performed at Saclay.
- Ninja cathode will be tested at Cornell University.

Thank You