Plasma processing to improve SRF accelerating gradient

Presented at the

SRF2015 Conference THBA01

Marc Doleans, on behalf of SCL systems group

September 2015

overview

- Increase linac energy by in-situ plasma processing of superconducting linac cavities
- Plasma processing R&D
 - Understanding of the plasma processing mechanism
 - Development of a reliable plasma processing technique
 - Performance improvement for single cavities in horizontal test apparatus (HTA)
- On-going activity: Plasma processing of an offline cryomodule

In-situ plasma processing to increase linac energy

- Higher linac energy provides more margin for reliable operation at 1.4 MW
- Most cavities at SNS are limited by field emission (FE) leading to thermal instability in end-groups
 - Average accelerating gradients are 12 and 13 MV/m for the two cavity geometries
- Developing in-situ plasma processing to reduce FE and increase accelerating gradients

ational Laboratory

In-situ plasma processing to reduce FE

- Plasma processing aims at
 - Reducing FE by increasing work function of cavity RF surface
 - Enabling operation at higher accelerating gradients
- Scaling from Fowler-Nordheim equation

$$J = a \frac{(\beta E)^2}{\phi} e^{-b \frac{\phi^{3/2}}{\beta E} + \frac{c}{\phi^{1/2}}}$$
$$dJ = 0 \implies \frac{dE_{acc}}{E_{acc}} \approx \frac{3}{2} \frac{d\phi}{\phi}$$

- J : current density
- E : surface electric field
- β : field enhancement factor
- $\boldsymbol{\varphi}$: work function

- 10-20% increase in ϕ leads to 20-30% increase in Eacc

Hydrocarbon contaminants on Nb surfaces

Hydrocarbon contaminants observed on all Nb surfaces

- Volatile hydrocarbons released from cryomodule surfaces during thermal cycle
- Hydrocarbons on offline spare cavity surfaces
- Hydrocarbons fragments seen in secondary ion mass spectrometry (SIMS)
 - Mechanically polished niobium samples
 - Chemically polished niobium samples (BCP)

Hydrocarbons tends to lower work function of Nb surface

- Develop in-situ plasma processing to remove hydrocarbons from cavity RF surface

Low-temperature and low-density reactive plasma for removing hydrocarbons in SNS cavities

Plasma is a rich and reactive environment

- lons, e-, neutrals, excited neutrals, molecules, radicals, UV...
- Plasma processing is a versatile technique used for various purposes
 - Cleaning, activation, deposition, crosslinking, etching....
- Chosen to develop room-temperature reactive oxygen plasma
 - Volatile by-products are formed through oxidation of hydrocarbons and pumped out

ational Laboratory | REACTOR

Plasma processing in four phases

R&D with 3-cell and 6-cell cavities

In-situ processing in linac tunnel

Processing of 6-cell cavity in HTA*

Processing of cryomodule in test cave

On-

Reliable plasma generation in SNS HB cavities

- Plasma generated inside cavity volume
 - Gas manifold and RF station
 - Neon (~100 mTorr) for plasma ignition and tuning
 - RF power <1 kW
- Plasma ignites in discrete cells, tuning necessary to process all cells
 - Dual tone excitation (2 rf generators)
 - on and off-resonance excitation
 - Plasma loaded cavity theory

Removal of residual hydrocarbons by adding oxygen to the neon plasma

- Hydrocarbons removed from top surface through oxidation and formation of volatile by-products
 - H₂, H₂O, CO and CO₂
- Residual gas analysis to monitor plasma cleaning
 - Depletion of surface hydrocarbons within 30-45 minutes per cell
 - Removes 0.5-1.0 monolayer of hydrocarbon
 - Six cells of a cavity processed sequentially

Hydrocarbons removal studies using Nb samples*

- Hydrocarbons concentrated near the top surface of Nb samples before plasma processing (black dashed curves)
- After short plasma processing time (left figure)
 - Top surface layer is depleted of hydrocarbons
- After longer plasma processing time (right figure)
 - Top surface layer and deeper layers depleted of hydrocarbons

Plasma processing increases work function

Scanning Kelvin Probe instrument used to measure work function

- Contact potential difference between reference probe and sample
- Nb samples ϕ =4.7 eV initially
- Plasma processing technique developed at SNS
 - Removes Hydrocarbons
 - Systematically improves the work function
 - 0.8 eV increase measured
 - ~17% increase in ϕ can lead to
 - ~25% increase in Eacc

In-situ plasma processing of cavity in HTA leads to performance improvement

- Two spare cavities were dressed with helium vessel and prepared in cleanroom (HB59 and HB52 cavities)
- HB59 and HB52 cavities were tested in HTA at 4.5 K before and after plasma processing
- In-situ plasma processing for each cavity was done in HTA at roomtemperature between cold-tests

ational Laboratory REACTOR

Plasma processing improves HB59 performance

Before plasma processing

- Frequent trips associated with vacuum activity and temperature increase during RF conditioning
- Reached 15.2 MV/m at 20 Hz repetition rate

After plasma processing

- Easier RF conditioning
- Reached 20.5 MV/m at 60 Hz repetition rate

Plasma processing improves HB52 performance

Before plasma processing

- Frequent trips associated with vacuum activity and temperature increase during RF conditioning
- Reached 15 MV/m at 10 Hz repetition rate

After plasma processing

- Easier RF conditioning
- Reached 21.5 MV/m at 60 Hz repetition rate

10 12 14

Further improvement after second plasma processing may be linked to further depletion of hydrocarbon levels below top surface

Plasma processing reduces field emission

- HB59 cavity plasma processed twice in HTA
- Radiation associated to FE measured during cold-tests
- Field emission onset increased
 - $\sim 20\%$ increase after first plasma processing
 - ~30% increase after second plasma processing
 - Reasonable agreement with expectation from surface studies

ional Laboratory | REACTOR

Plasma processing might also reduce SEY

SNS HB cavities show multipacting activity between 9 and 14 MV/m

- Normally reduces after RF conditioning and cavity performance then limited by FE
- Some cavities have severe multipacting which limit their performance

Cavity HB52 performance initially limited by multipacting

- Severity of multipacting significantly reduced after plasma processing
 - Reduction of SEY possibly from reduction of escape probability and/or removal of hydrocarbons with large intrinsic SEY

Plasma processing of an offline cryomodule

Cryomodule baseline test completed

- Repairs successful: HOM antennas removed and FP replaced (MOPB112)
- Cryomodule performance similar as in operation
- Plasma processing of cryomodule on-going
 - Plasma ignition/tuning successful for all 4 cavities of the cryomodule
 - By-products of hydrocarbon oxidation observed in RGA
 - Cryomodule will be re-tested after plasma processing

CONCLUSION

- Plasma processing effort is going well
 - Standard plasma processing procedure defined
 - Achieved in-situ plasma processing of a cavities in HTA
- Demonstrated cavity performance improvement after plasma processing
- Plasma processing of an offline HB cryomodule is on-going
- Deployment of plasma processing in HB cryomodules of SNS linac planned in FY16 and FY17 to reach 1 GeV beam energy
- Plasma processing of MB cavities for STS* is also planned

