

SRF2015

17th International Conference on **RF Superconductivity** Whistler Conference Centre September 13-18 2015

Center for

Accelerator Science

RECENT DEVELOPMENTS IN SUPERCONDUCTING DEFLECTING-MODE CAVITIES

Jean Delayen

Center for Accelerator Science Old Dominion University and Thomas Jefferson National Accelerator Facility

Outline

- A bit of history
- TM₁₁₀–class cavities
- New geometries and concepts
 - "TEM-like" cavities
 - "TE-like" cavities
 - Their properties
 - Dependence of frequency and velocity on external dimensions
 - Lower- and higher-order modes and couplers
 - Multipacting
 - Multipoles
 - Beamline aperture
- Proofs-of-principle demonstrations and results
- Design and engineering of prototypes

Outline

• A bit of history

- TM₁₁₀ class cavities
- New geometries and concepts
 - "TEM-like" cavities
 - "TE-like" cavities
 - Their properties
 - Dependence of frequency and velocity on external dimensions
 - Lower- and higher-order modes and couplers
 - Multipacting
 - Multipoles
 - Beamline aperture
- Proofs-of-principle demonstrations and results
- Design and engineering of prototypes

The 1st Superconducting RF Deflecting Cavity

OLD

DMINION

The 1st Superconducting Crabbing Cavity

Complex HOM Damping Scheme

*K. Hosoyama et al, "Crab Cavity for KEKB", Proc. of the 7th Workshop on RF Superconductivity, p.547 (1998)

- Operating mode: TM₁₁₀ mode
- Required transverse deflection: 1.44 MV
- Operation: 2007-2010

Center for Accelerator Science

Page 5

Some History (KEK)

Installation of Crab Cavities for HER Jan. 8, 2007, for LER Jan. 11, 2007

Crab Cavity for HER

Cool-down of Crab Cavities Jan. 29, 2007 Beam Operation Start Feb. 13

Carrying the Crab cavity using crane track

Crab Cavity for LER

Outline

- A bit of history
- TM₁₁₀–class cavities
- New geometries and concepts
 - "TEM-like" cavities
 - "TE-like" cavities
 - Their properties
 - Dependence of frequency and velocity on external dimensions
 - Lower- and higher-order modes and couplers
 - Multipacting
 - Multipoles
 - Beamline aperture
- Proofs-of-principle demonstrations and results
- Design and engineering of prototypes

Features of TM₁₁₀ Deflecting/Crabbing Cavities

- Deflection mostly through interaction with H-field
- Presence of lower-order mode (TM₀₁₀)
- TM₁₁₀ mode would be degenerate in cylindrical geometry
 - Squashed cross-section
- Large with respect to wavelength compared to new designs
 - Disadvantageous for low frequency
 - Advantageous for high frequency
 - Able to accommodate large apertures
- Few degrees of freedom in the design
 - Multipoles
- Relatively low real estate gradient
 - Couplers on beam line

JLab/ANL 2.8 GHz TM₁₁₀ Cavity

"Alternate" Prototype Crab Cavity (CC-A2 for SPX Project) Vertical Test at JLab

Jefferson Lab

DMINION UNIVERSITY

Dimensional Constraints

<u> ((†))</u>

OID

Outline

- A bit of history
- TM₁₁₀ class cavities
- New geometries and concepts
 - "TEM-like" cavities
 - "TE-like" cavities
 - Their properties
 - Dependence of frequency and velocity on external dimensions
 - Lower- and higher-order modes and couplers
 - Multipacting
 - Multipoles
 - Beamline aperture
- Proofs-of-principle demonstrations and results
- Design and engineering of prototypes

New Geometries and Concepts

- Cavities operating in "TEM-like" modes
 - 4-rod cavity
 - 4 quarter-wave resonators (deflection from both E and H)
 - Parallel-bar
 - 2 half-wave resonators (deflection from E)
 - Evolved into rf-dipole

- Cavities operating in "TE-like" mode (cannot be pure TE)
 - Rf-dipole
 - Double quarter-wave
 - Ridged waveguide

Center for

4-Rod Cavity

- 499 MHz normal conducting rf separator^{*} at Jefferson Lab
- High shunt impedance

- Operates in a TEM-like mode
 - Uses both electric field and magnetic field
 - Deflecting mode is not the lowest mode

Magnetic field

Fundamental deflecting mode

*C. Leemann and C.G. Yao, "A Highly Effective Deflecting Structure", Proc. of the 1990 LINAC, p.232-234, (1991)

Page 13

Center for

4-Rod Cavity (U. Lancaster/JLab)

Emax @3MV	32.0 MV/m
Bmax @3MV	60.5 mT
Transverse R/Q	764.6 Ohms

Center for

Accelerator Science

OLD DMINION UNIVERSITY

Parallel-Bar Cavity to RF-Dipole Cavity (ODU)

Ridged Waveguide Cavity (SLAC)

Frequency

LOM

400.0

None

MHz

MHz

- 400 MHz Crabbing Cavity*
- Operating at a TE₁₁-like mode

Double Quarter-wave (BNL)

Electric field (left) and magnetic field (right) of the fundamental mode.

B. Xiao et al, PRSTAB 18, 041004 (2015)

Dimension-dependent Properties

- 4-Rod
 - Frequency governed by longitudinal dimension (~ $\lambda/2$)
 - Frequency independent of transverse dimension
 - Could accommodate very low frequencies with small transverse size
 - "Matched" particle velocity related to longitudinal dimension
 - Limited to high-velocity particles
- Parallel-bar, "TE-like" cavities
 - Frequency governed by transverse dimension (~ $\lambda/2$)
 - Transverse size is frequency-dependent
 - Frequency independent of longitudinal dimension
 - "Matched" particle velocity related to longitudinal dimension (~ $\beta\lambda/2$)
 - Could accommodate low-velocity particles

HOM Damping

- "TEM-like" cavities (4-rod)
 - 4 same-order modes
 - Accelerating mode lower in frequency than fundamental deflecting mode
 - Other modes in close proximity
 - Need for notch-filters

.......

{{∮}}

Олъ

OMINION

Center for

Accelerator Science

SOM Monopole

1.53e7 1.44e7 1.34e7 1.25e7 1.15e7 1.06e7

HOM Damping

- "TE-like" cavities (RFD and DQW)
 - No lower-order mode
 - Frequency of first HOM is about 1.5 that of fundamental deflecting mode

Nearest cavity mode ~230 MHz away

HOM Damping for "TE-like "400MHz Cavities

- First HOM at 570 MHz
- 3 HOM couplers with filters

- First HOM at 630 MHz
- 1 HOM coupler with filter
- 1 HOM coupler without filter
 - Does not couple to the fundamental

Multipacting

- Extensive simulations of multipacting have been performed using the SLAC ACE3P suite of codes
- Multipacting occurred in the proof-of-principle cavities where predicted, was easily processed, and did not reoccur

Multipole Components

- Shaping of the geometry near the beamline can be used to control the magnitude of the multipoles
 - Involves trade-off with surface fields and shunt impedance

Jefferson Lab

Influence of Beamline Aperture

• Electromagnetic properties of "TE" cavities are quite sensitive to beamline aperture (separation between the poles or rods)

Outline

- A bit of history
- TM₁₁₀ class cavities
- New geometries and concepts
 - "TEM-like" cavities
 - "TE-like" cavities
 - Their properties
 - Dependence of frequency and velocity on external dimensions
 - Lower- and higher-order modes and couplers
 - Multipacting
 - Multipoles
 - Beamline aperture
- Proofs-of-principle demonstrations and results
- Design and engineering of prototypes

400 MHz RF-Dipole Cavity Fabrication

400 MHz Double Quarter-wave Cavity Fabrication

400 MHz 4-Rod Cavity Fabrication

Cryogenic Tests of 400 MHz Proofs-of-Principle

Double Quarter Wave

<u> ((†))</u>

OLD

499 MHz Deflecting Cavity

Frequency	499.0	MHz		1.0×10) ¹¹		2.0.1/	
Aperture Diameter (d)	40.0	mm					• 2.0 K	• 4.2 K
Nearest HOM	777.0	MHz						
E_p^*	2.86	MV/m		1.0×10	10 -			
B_p^*	4.38	mT					**************************************	
B_p^*/E_p^*	1.53	mT/ (MV/m)		Q				
$[R/Q]_T$	982.5	Ω		1.0×1	09			Quench
Geometrical Factor (<i>G</i>)	105.9	Ω				-	10000000000000000000000000000000000000	Guench
$R_T R_S$	1.0×10 ⁵	Ω^2			~ ~			
At $E_T^* = 1$ MV/m				$E_t (\text{MV/m})$	08 ← 0.0	5.0	10.0	15.0
8	A-6			V_t (MV)	0.0	1.5	3.0 3.	4.2 4.5
	3 Int			$E_p ({ m MV/m})$	0.0	14.3	28.6	42.9
a uno -				$B_p (\mathrm{mT})$	0.0	21.9	43.8	65.7

750 MHz Crabbing Cavity

Page 31

Accelerator Science

UNIVERSITY

Multi-cell Deflecting Cavity ANL/FNAL

- Deflecting cavities for the manipulation of the 4D phase space of beams are being investigated by a collaboration of ANL-APS/PHY and FNAL. Evolution of design from S.U. De Silva and J.R. Delayen, PRST-AB, 16, 012004 (2013). Applications:
 - Short Pulse X-ray Generation: A. Zholents et al, NIM A, 425 (1999) 385-389 and
 A. Zholents, NIM A, 798 (2015) 111-116.
 - High Resolution Streak Cameras.

Figure 3: Vector electric (a) and magnetic (b) fields of the 2815 MHz operating dipole mode.

Courtesy Zack Conway, ANL

Center for

Multi-cell Deflecting Cavity ANL/FNAL

- A prototype superconducting (SC) cavity has been built to demonstrate the feasibility of this concept, QMiR (Quasi-waveguide Multi-cell Resonator):
 - The deflecting electromagnetic mode trapped in a waveguide.
 - A very high shunt impedance = 1 QMiR ~ 1000 Ω = Lower cryogenic load, lower cavity count and lower real-estate length requirements along a beam line.
 - The waveguide cut-off frequency allows for the propagation of all higher order mode power out via the beam pipes to room temperature loads. Eliminates complex HOM extraction couplers.

Courtesy Zack Conway, ANL

Multi-cell Deflecting Cavity ANL/FNAL

Center for

Accelerator Science

DMINION

Outline

- A bit of history
- TM₁₁₀ class cavities
- New geometries and concepts
 - "TEM-like" cavities
 - "TE-like" cavities
 - Their properties
 - Dependence of frequency and velocity on external dimensions
 - Lower- and higher-order modes and couplers
 - Multipacting
 - Multipoles
 - Beamline aperture
- Proofs-of-principle demonstrations and results
- Design and engineering of prototypes

Cavity Designs for LHC Crabbing System

OLD

DMINION

Cavity Engineering for LHC Crabbing System

Integration into Cryomodule for SPS (DWQ)

Integration into Cryomodule for SPS (RFD)

<u> ((†))</u>

Parting Thoughts

- Faced with demanding challenges from the accelerator community for compact deflecting-mode cavities, the international SRF community has responded with its usual level of innovation and ingenuity
- Proof-of-principle cavities have been developed and tested
 - Requirements have been met and sometimes greatly exceeded
 - Behaviors in cryogenic tests matched predictions from simulation tools
 - New designs offer flexibility to meet specific requirements
 - New designs ease damping of HOMs but it remains a challenge
- Prototype cavities and cryomodules to be tested with high-current beams are being engineered
- Deflecting-mode SRF cavities have wide range of applicability and are key for the success of a number of future accelerators for high-energy physics, nuclear physics, and light sources.

Acknowledgments

- Many thanks to :
 - A. Castilla, S. U. De Silva, H. Park (ODU)
 - Q. Wu (BNL)
 - G. Burt (Lancaster U.)
 - Z. Conway (ANL)
 - H. Wang (JLab) for providing material
 - Z. Li (SLAC) for his contributions to electromagnetic designs
 - FNAL, CERN, and UK colleagues for engineering of prototype cavities and cryomodules
 - Niowave and JLab for fabrication of proof-of-principle cavities

