

SRF AND COMPACT ACCELERATORS FOR INDUSTRY AND SOCIETY

Robert Kephart Fermilab SRF2015, Whistler, BC Sept, 2015

Despite their powerful impact on <u>Science</u>, most accelerators are used for other purposes

- About 30,000 accelerators are in use world wide
 - Sales of accelerators > \$ 2 B /yr and growing
 - Accelerators touch over \$ 500B/yr in products
 - Major Impact on our economy, health, and well being

Some Products:

🔁 Fermilab

NO SRF based industrial accelerators in production

Many Future <u>Industrial</u> Accelerator Applications are envisioned. Some examples:

Sector	Opportunities
Energy and Environment	• Upgrade of heavy oils with electron beams
e	Gas to liquids conversion and flare gas recovery
e	 Waste water and sludge treatment
e	Flue gas treatment (SOx, NOx removal)
	 Accelerator driven power plants
	Nuclear waste destruction
Industrial	 Next generation semiconductor fabrication (FEL's)
6	Improved Highway construction (extended life)
	 Materials: new surface properties
	 Industrial isotopes as wear indicators
	Improved food preservation and safety
	• Catalyze chemical reactions to save energy/time
Medical	Accelerator-driven medical isotope production (Mo99)
	Heavy ion beam cancer therapy
Safeguards and Security	 Non-invasive and stand-off inspection

- Some of these applications may create entirely new industries (large!)
- Most require: High average beam power industrial accelerators
 Low energy (< 10 MeV), high power electron accelerators appears to be broad need where SRF might play a role... so I will focus on that for this talk.

3

Considerations for <u>Industrial</u> Accelerators

- The whole idea of using an accelerator must make <u>financial</u> sense (its not enough that it works technically)
- Accelerator <u>capital</u> and <u>operating</u> costs both matter
 - So do <u>facility</u> costs (shielded enclosures, infrastructure, etc)
 - Size matters, smaller is better.
- Must be robust and simple to operate & maintain
- Downtime is expensive \rightarrow reliable
- Accelerators must be matched to the task... often industry needs a "blow torch" not a "surgical laser"

SRF has now become the "technology of choice" for big science accelerators

- Why? SRF cavities enables high gradients and Q₀
 - limits construction costs
 - a large fraction of the input RF power goes into beam power
 - CW operation lowers the cost of RF power (ave power = peak power)
- SRF is now used for essentially every new large science accelerator requiring high power beams (e.g. CBEAF, SNS, FLASH... XFEL, LCLS-II, ESS, PIP-II, FRIB, RAON, ILC, etc)
- These projects have driven large international efforts on SRF R&D
- Extensive infra: DESY, FNAL, JLAB, Cornell, China, India, Korea, etc
- SRF is judged by review committees to be a "credible" technology on which to base ~\$ 1B class science projects

But interestingly not currently credible for industrial accelerators

SRF based accelerators are not attractive to industry

- Why? Because current designs are <u>complex</u>
 - Experts required for both operations and maintenance
 - Many external systems needed
 - Complex construction (can't easily buy one!)
 - e.g. Chemistry, HPR, clean rooms, RF power systems, LLRF, cryogenic systems, gas and liquid cryogen storage, electrical and water cooling infrastructure, safety systems, etc)
 - Need complete turn-key solutions
- Cryogenics is particularly problematic!
 - Losses in SRF cavities are small, but they take place at low temperature (4 K or even 2 K) where the Carnot efficiency is poor
 - Leads to complex cryomodules and large complex cryogenic refrigerators for current big science accelerators

Current: SRF "science" accelerators are large and complex

CBEAF CW electron linac 2 K cryoplant

SRF Proton Linac Spallation Neutron Source at ORNL

7

If complexity is driven by cryogenics... What can be done?

• SRF cavities have losses at cryogenic temperatures that depend on frequency, temperature, gradient, and surface processing

$$P_{loss} = \alpha \omega^{2} \exp -(T/Tc) + R_{residual}$$

$$R_{BCS}$$

Padamsee, pg 74

- The BCS term dominates at 4K for pure Nb cavities in the past this has driven the choice of <u>low temperature</u> operation and/or <u>low frequency</u> cavities
- Even with low frequency cavities and 4 K operation, attempts to date to make an industrial SRF accelerators have resulted in much of the complexity of a big science machine

Implications of low frequency choice

1.3 GHz produced by Niowave for FNAL

- Low frequency cavities are physically larger -> higher capital costs vs higher freq elliptical cavities
- But... in the past, operating higher frequency Nb cavities with CW RF at any reasonable gradient at 4K→
 - very high cryogenic losses \rightarrow refrigerators with 100's of watts capacity
 - Even "small accelerators" need complex cryo systems.
- Can we imagine a "simple" higher frequency SRF industrial accelerator ?

Even "small" 4K cryogenic plants are complex

- Lots of ancillary equipment beyond the refrigerator cold box
- Compressors, He Gas storage tanks, LHe & LN2 storage dewars, purification package, cooling water, controls, etc.

Fermilab

- Fermilab operated ~ 30 such systems over 25 yrs in a semiindustrial environment. Lots of experts & maintenance required !
- <u>Showstopper</u> for many industrial applications

Can SRF accelerators be attractive to industry ?

An assertion:

- Recent technology advances in SRF now make <u>plausible</u> to construct dramatically simplified <u>compact</u>, <u>efficient</u>, <u>lightweight</u> SRF electron linacs
 - capable of 10's or even 100's of kW ave beam power @~ 10 MeV
 - able to operate with high duty factors e.g. Continuous Wave (CW)
- I will describe one specific vision for such a device, but it should be understood that we are suggesting <u>an approach to</u> <u>creating an entirely new class of SRF based accelerators</u>
- Such accelerators could find widespread use in industry, medicine, environmental, & security applications ...
 - including replacing powerful Co⁶⁰ sources that now represent significant security risks (use in "dirty" bombs)

Why has this not been done before? The approach integrates six recent technical advances

1) N doping \rightarrow Factors of 3-4 improvements in Q₀ at 2 K

- LCLS-II 9-cells \rightarrow Ave Q₀ > 3 x 10¹⁰ at 2 K, 16 MV/m
- Big savings for LCLS-II ...
- But... N-doping also helps at 4 K!

N doped 1.3 GHz cavity (blue) has a much slower Q₀ fall off with gradient vs a standard ILC, 120C baked cavity (black) An area for more research/optimization !

- <u>Without optimization</u> a 1.3 GHz 9-cell elliptical cavity can accelerate electrons to ~7 MeV at 5% duty factor using ~ 3.5 W of refrigeration
- Game changer! A compact 7 MeV SRF accelerator cooled with a commercial 5 W @ 4 K cryo-cooler! (ave power = a few kW)
- We know how to do this today

2) Nb Cavities coated a higher Tc superconductor*:

 Cornell has demonstrated that a 1.3 GHz, 1-cell Nb cavity coated with Nb₃Sn can be operated with quality factors ~ 2 x 10¹⁰ at 4.2 K with gradients ~10 MeV/m (e.g. Dan Hall's talk Tues)

Nb₃Sn → factor of >20 higher Q_0 at 4 K vs pure Nb!

- A Nb₃Sn coated 9-cell cavity operated with CW RF at 10 MeV/m @ 4.2K has cryogenic losses ~ 3.5 W
 - Again in range for a commercial 5 W cryo-cooler
- Clearly a lot of work needs to be done to develop a robust Nb₃Sn 9-cell process, but this seems likely to work (ie <u>plausible</u>)
 * DL Hally M Lines LT Maximum 5 Datas (DECENT CELLUIS)

13 R. Kephart, SRF2015, Whistler BC, Sept 2015

* D.L. Hally, M. Liepe, J.T. Maniscalco, S. Posen "RECENT STUDIES ON THE CURRENT LIMITATIONS OF STATE-OF-THE-ART Nb3Sn CAVITIES" IPAC15, WEPTY074 (2015)

3) Conduction Cooled Cavities:

- With small enough losses conduction cooling* is <u>plausible</u>
 - Dramatically simplifies cryomodule: NO liquid Helium, pressure vessels, piping, pressure reliefs, safe under vacuum fault, etc.
 - Dramatically simplifies external systems: NO "open" He gas or liquid storage, no purification systems, cryo-cooler replaces LHe refrigerators (very reliable and simple)
 - For cavity heat loads < 5 W: the cavity and cryo-cooler can be connected with high purity Aluminum → < 0.5 K temp rise from cryocooler tip to cavity
 - FNAL demonstrated a cond cooled SC quad
 - Received DOE Accel stewardship award
 - FNAL-PAVAC working on additive process to add high purity aluminum ring to cavity
 - Plausible?... Needs to be demonstrated!

*FNAL patent pending

Commercial cryo-coolers are now better & cheaper!

4K GM-JT CRYOCOOLER SERIES

Performance Specifications

Model Number	CG304SC	CG308SC	CG310SC
3rd Stage Capacity* Watts @ 4.3 K (50/60 Hz)	1.0/1.2	3.0/3.5	4.2/5.0
Electrical Supply 50/60 Hz	3 phase, 200 V		
Power Consumption 50/60 Hz	4.5/5.4	5.1/6.4	5.1/6.4
Cooling Water L/min. (gal./min.)	5.5-6.5 (1.5-1.7)	8.0-10.0 (2.1-2.6)	8.0-10.0 (2.1-2.6)
Refrigeration Unit Weight kg (lbs.)	18.0 (39.7)	35.0 (77.2)	50.0 (110.2)
Compressor Weight kg (lbs.)	205 (452)	220 (485)	220 (485)
Maintenance Hours	10,000		

Standard Scope of Supply

- V304SC, V308SC or V316SC Cold Head
- U304CWA or U308CWA Compressor
- Helium Vapor Gauge (with CG308SC and CG310SC models)
- Hydrogen Vapor Gauge
- 6 m (20 ft.) Helium Gas Lines
- 6 m (20 ft.) Valve Motor Cable

🔁 Fermilab

- Tool Kit
- Commercial 5 W@ 4 K systems available (e.g Sumitomo)
- Simple, turnkey operation; highly reliable (light... < 600 lbs)
- Widely used for hospital MRI magnets, He recovery systems

4) New RF power technology (magnetrons!):

- Injection locked magnetron with excellent phase and amplitude control have been demonstrated* when driving a narrow band load (SRF cavity @ 2.45 GHz)
 - Dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s.
- Magnetrons can drop the cost of RF power substantially
 - ~\$ 10 /watt for solid state or tubes to ~ \$ 2-3/ Watt
 - High efficiencies > 80% possible (~ factor of 4-5 cost reduction)
 - FNAL is part of \$ 1 M Phase II DOE SBIR with Calabazas Creek/CPI to develop a 1.3 GHz 60 KW CW injection locked magnetron. (ready to test in ~18 months)
- Allows accelerators with multiple cavities driven by multiple magnetrons locked to a common frequency

5) Compact, integrated electron guns: (several approaches)

- Field Emission Cathodes : Examples: under development by Colorado State, Northern Illinois University, and Euclid
 - Promising because they are simple and have low heat leak
 - Various technologies: Carbon nano-tubes, Nb pillars, nano-diamonds
 - A key requirement is that the electron gun must not contaminate the interior of a high Q_0 cavity

5) Compact, integrated electron guns (cont)

 Building on work at Berlin, BNL, etc, Fermilab and CSU are studying integration of the electron gun directly on to the end of a multi-cell 1.3 GHz cavity (creating an 8.5 cell version) and feasibility of a thermionic

- Thermionic gun requirements
 - Low thermal load...3 W input →< 0.1 W estimated into 4 K cavity
 - Need excellent beam transmission to achieve low beam loss to cold surfaces (e.g. 50 kW * 10⁻⁵ = 0.5 W)
 - Simulation indicates a 3rd harmonic RF gun can do this
 - Plausible? Need to validate simulations with high Q₀ single cell gun cavities, then full 8.5 cell cavities
 Eermilab

- Electro-magnetic design is such that eliminates the need for copper plated tubes & bellows connecting room temperature to 4 K
- Dynamic heating in copper shield is largely removed at ~ 60 K
- For 20 KW, static and dynamic loss @ 4.5 K is < 0.5 W
- Eliminates copper plating, a major failure mode for many existing coupler designs
- Recent DOE Acc stewardship award to Euclid-FNAL

*patent pending,

Integrating these ideas one can create a design for <u>simple</u> industrial SRF based accelerator

- Industry, mobile, or security applications
- Goal: Simple, turnkey operation, low cost
- An example of a future SRF industrial accelerator

* FNAL patent pending

~ 10 MeV

5→50 KW

Cryostat

cooler

•

•

 $Nb \rightarrow Nb_3Sn$

– ~ 0.5 m dia

 $- \sim 1.5 \text{ m long}$

Cooled by cryo-

Simple, rugged

RF power =

magnetron

Total weight

< 3000 lbs ->

mobile apps.

Fermilab

design*

Variations on this theme

Rectangular cryostats Operates in any orientation

enables "arrays" e.g. 6 x 50 KW for industrial applications like cross-linking, food irradiation, security and cargo scanning

- Higher beam <u>power</u>:
 - While less compact 5-cell 650 MHz cavities have lower dynamic RF heating and twice the aperture
 - Refinery, water/sludge, EBFGT, etc need MW !
- Higher beam <u>energy</u>...multiple cavities in series
 - Isotope creation, FEL's, etc
 - Requires tuners, RF freq, phase, amp control

Summary

- Many future accelerator applications can benefit from the high wall plug power efficiencies possible with SRF
- Advances in SRF technology now make it possible to envision simple, compact, high average beam power SRF based <u>industrial</u> accelerators
 - Nb₃Sn development, cryocoolers, conduction cooling, and cheaper RF sources all are key areas of development
- SRF industrial accelerators when fully developed will likely find broad use in new industrial, medical, environmental remediation, and security applications
- It seems likely that <u>industrial</u> SRF linacs will become a reality in the next decade ... this may alter the focus of our R&D which thus far has been aimed at big science accelerators

Acknowledgements

- B. Chase, A. Grassellino, I. Gonin, T. Khabiboulline, S. Kazakov, S. Nagaitsev, R. Pasquinelli, O. Pronitchev, S. Posen, A. Romanenko, V. Yakovlev Fermi National Accelerator Laboratory
- S. Biedron, S. Milton, N. Sipahi Colorado State University
- P. Piot and S. Chattopadhyay Northern Illinois University,
- R. Edinger PAVAC Industries
- A. Kanareykin Euclid Techlabs

extras

Does Conduction cooling work? Recent FNAL conduction cooled SC quad via cryo-cooler

- FNAL recently demonstrated conduction cooling via high purity Aluminum to successfully cool and operate a superconducting Quadrupole magnet with a cryo-cooler (1.5 Watt) ... funded as part of the ILC R&D program
- Very simple... very clean... worked well! (0.6 Watt load)
- Note lack of plumbing, pressure reliefs, u-tubes... etc.

Thermal conductivity of High Purity Aluminum

5N5 is available commercially

