

Crab Cavity and Cryomodule Development for HL-LHC

F. Carra^{*} on behalf of the Crab cavity collaboration

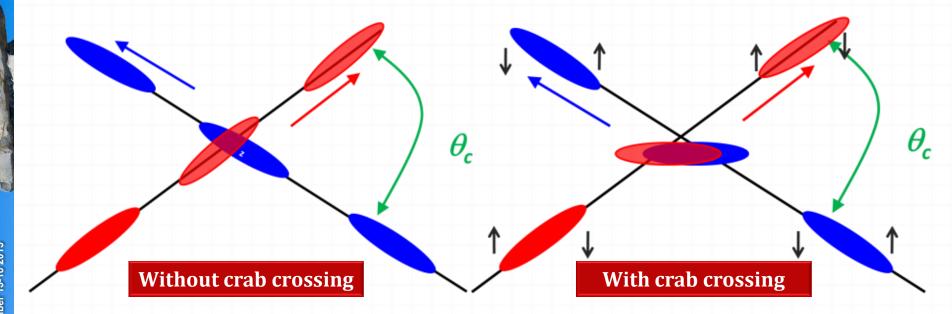
(*) CERN – European Organization for Nuclear Research, Geneva, Switzerland

SRF 2015 17th International Conference on RF Superconductivity Whistler, BC, Canada – *18 September, 2015*

Outline

Heat balance

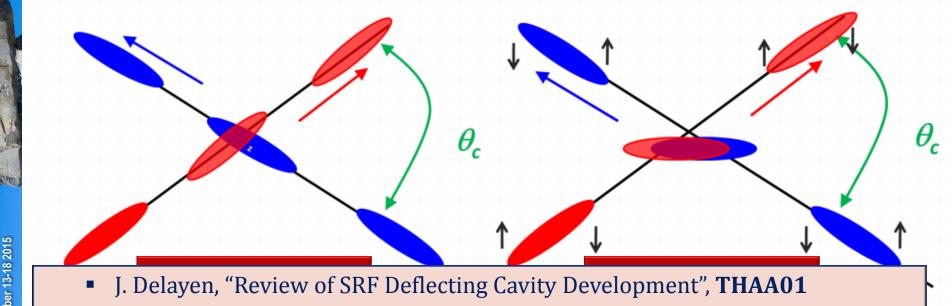
Summary


- Cryomodule components
- Heat balance
- Summary

• Particle accelerators (LHC): goal is the study of collisions between two particle beams

- The higher the number of collisions in the unit of time (luminosity), the larger the number of data acquired and studied
- $\theta_c > 0 \rightarrow$ reduction in luminosity compared to head-on collisions

- Crab crossing: **rotation of the colliding bunches** at the interaction point until $\theta_c = 0$
- Two RF design : Double Quarter Wave (DQW) and RF Dipole (RFD)



Conference on

RF superconductive crab cavities are a key upgrade in the frame of the HL-LHC project, aiming at increasing the LHC luminosity by a factor 10!

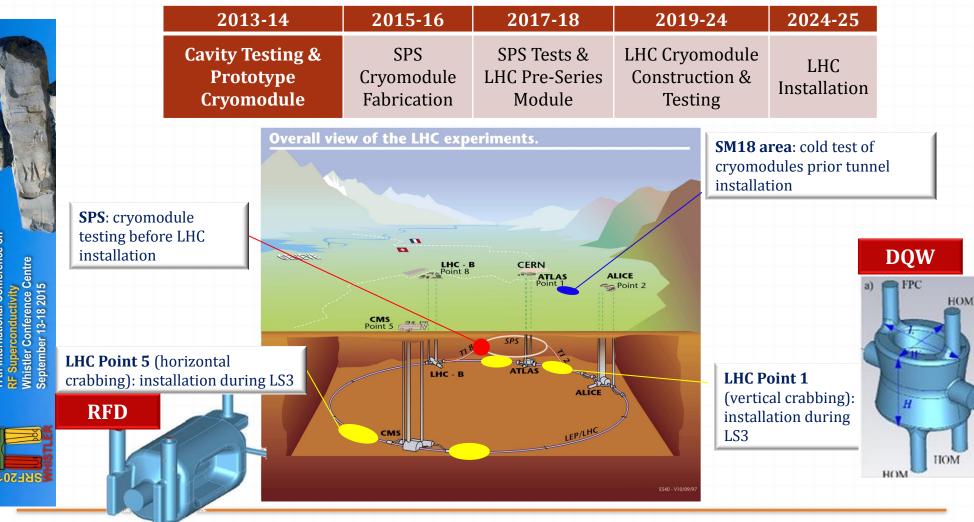
- Particle accelerators (LHC): goal is the study of collisions between two particle beams
- High Luminosity LHC
- The higher the number of collisions in the unit of time (luminosity), the larger the number of data acquired and studied
- $\theta_c > 0 \rightarrow$ reduction in luminosity compared to head-on collisions

 S. U. De Silva, "Electromagnetic Design of 400 MHz RF-Dipole Crabbing Cavity for LHC High Luminosity Upgrade", THPB053

RF superconductive crab cavities are a key upgrade in the frame of the HL-LHC project, aiming at increasing the LHC luminosity by a factor 10!

nternational Conference on

5


M

High Luminosity

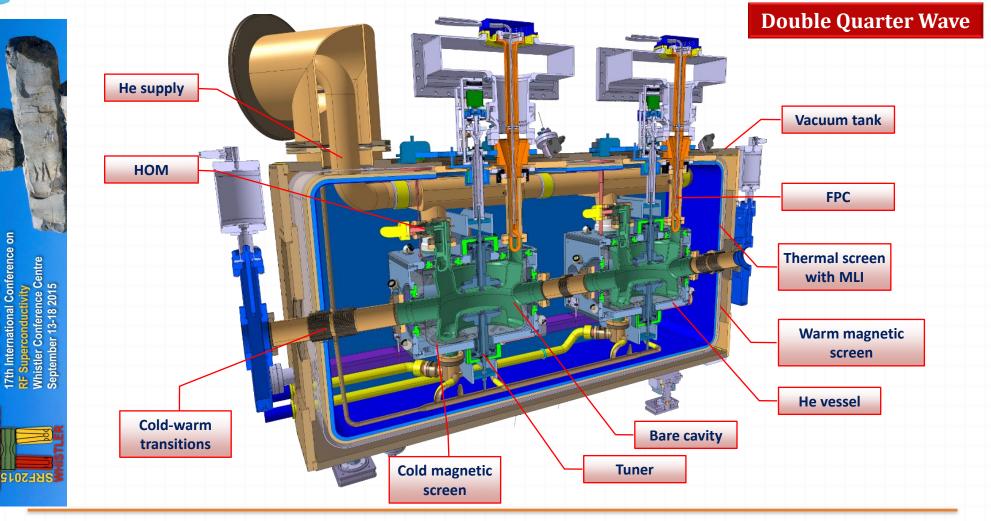
Context

Crab cavities: never adopted in hadron colliders

• **Testing in the SPS** is necessary before installation in the LHC

18.09.2015

Federico Carra – CERN


2

F201

M

Cryomodule

- Design of the cryomodule well advanced
- High Luminosity • Common effort between CERN, UK and US-Larp LHC

nal Conference on

5

DX(

ence Centre 8 2015

Cryomodule

- Design of the cryomodule well advanced
- High Luminosity
 Common effort between CERN, UK and US-Larp LHC

• Maximum compatibility of the two designs!

RF Dipole

- Cryomodule components
- Heat balance
- Summary

- RF design: successfully completed
- PoP RF tested with results above the specification
- Superfluid He at 2 K (RF performance, microphonics, machine protection)
- Dressed cavity = cavity + cold magnetic shield + helium tank + tuning + couplers

57

- M. Navarro, R. Calaga, "Bead-Pull Measurements of the Main Deflecting Mode of the Double-Quarter-Wave Cavity for the HL-LHC", THPB019
- K. G. Hernandez, "Performance Evaluation of HL-LHC Crab Cavity Prototypes in a CERN Vertical Test Cryostat", THPB050
- C. Zanoni, "Design of Dressed Crab Cavities for the High Luminosity LHC Upgrade", THPB070

6)/(

High Luminosity LHC



Helium tank

- Functions:
 - **1.** He container
 - 2. Cavity stiffener (cavities are only 4 mm thick!)

Deformation of the tank is transferred to the cavity. Estimation (test) of ~**1 mm deformation at interface if tank is fully welded**.

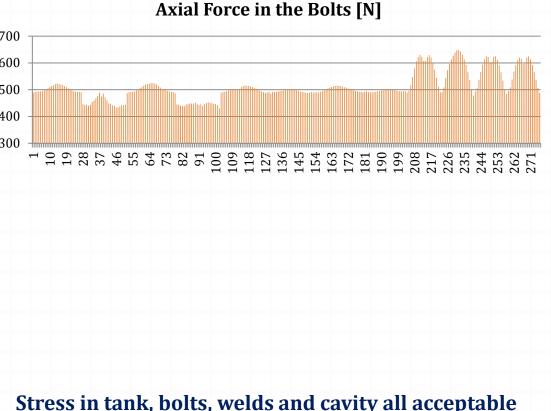
Design approach: **bolted tank** with superficial welds for leak tightness

- Max loads:
 - 1. Gravity
 - 2. 1.8 bara of pressure (during cool down)

0.16 deg

- 3. 4.4 kN bolt preload
- 4. Pretuning, only for DQW (about 0.11 mm displacement at the cavity interface)

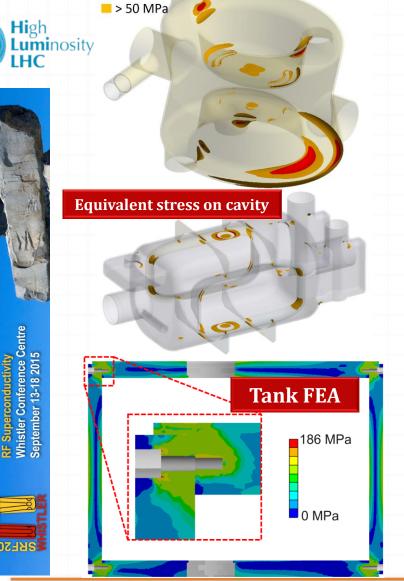
Titanium tank and bolts (M6) to minimize the thermal stresses during contraction

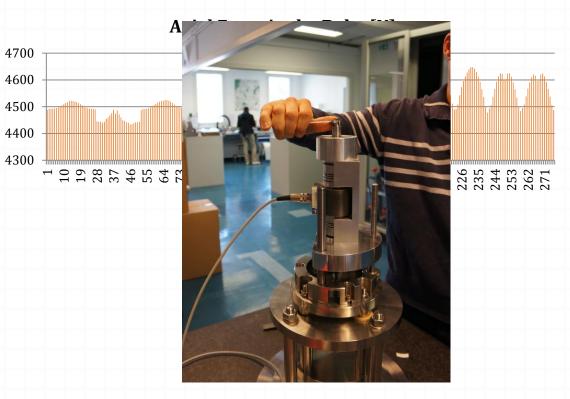


Conference on

5)(0

Mechanical Performance


- Stress in tank, bolts, welds and cavity all acceptable (cavities require stress linearization)
- Welding procedure and main loads to be tested with a prototype
- Minimum tightening torque of the screws experimentally evaluated

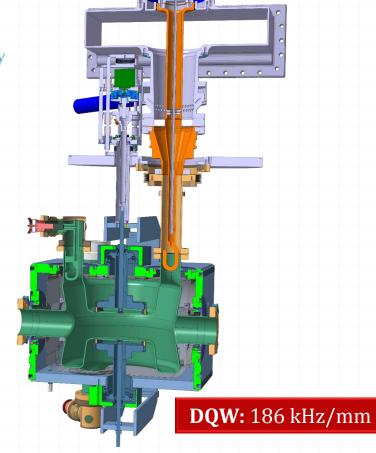

Conference on

57

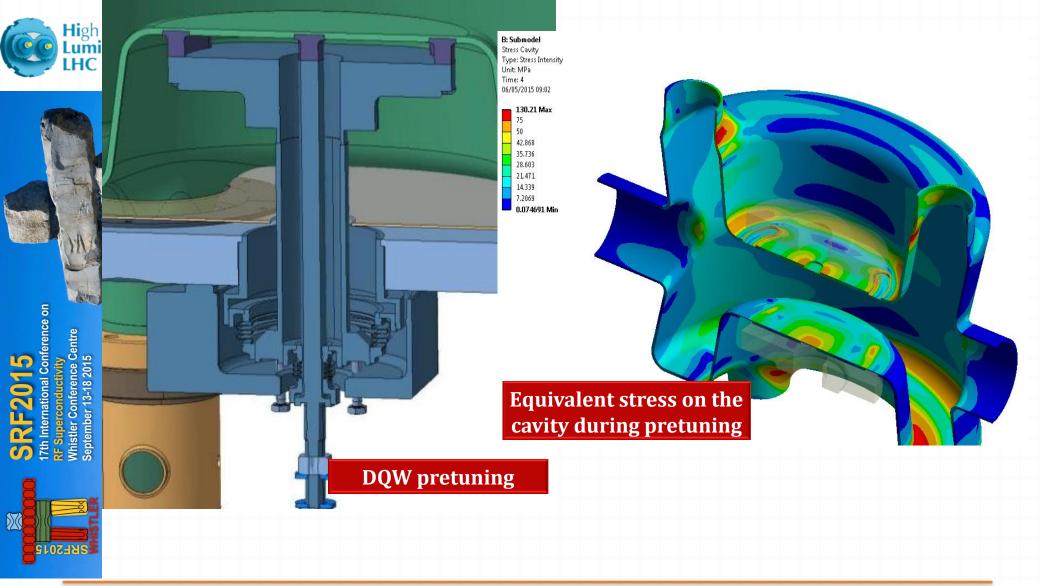
Mechanical Performance

> 75 MPa

- Stress in tank, bolts, welds and cavity all acceptable (cavities require stress linearization)
- Welding procedure and main loads to be tested with a prototype
- Minimum tightening torque of the screws experimentally evaluated



Tuning System



- Required tuner resolution: 0.5 kHz
- **Fine tuning range:** ±0.31 MHz (DQW), ±0.98 MHz (RFD) → **coarse pretuning added to DQW**
- Coarse tuning sensitivity ~ 0.8 MHz/mm

RFD: 345 kHz/mm

Tuning System

national Conference on

5

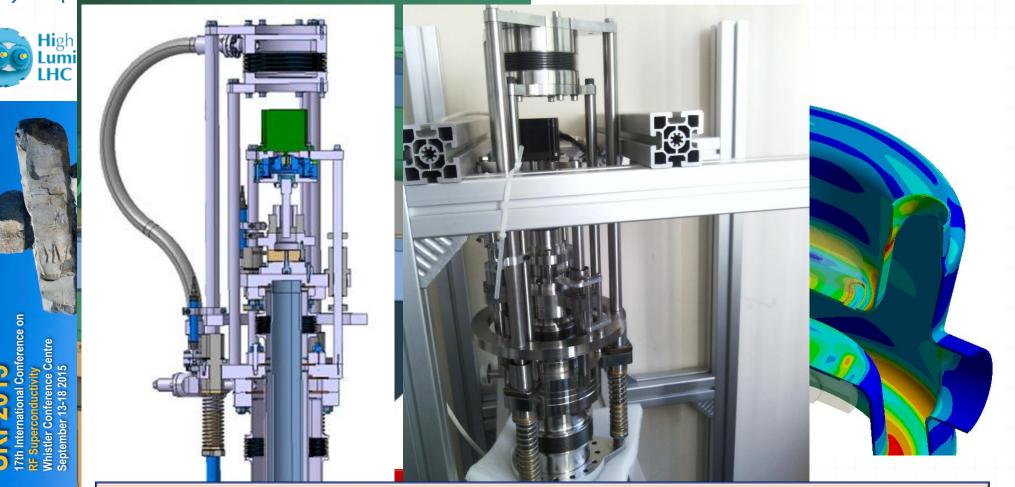
X

conductivity Conference Centre ar 13-18 2015

SRF2015

Septembe

High Lumi LHC


Tuning System

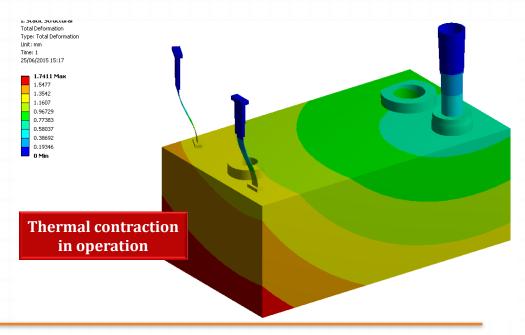
Crab prototype tuner actuator First tests 0.5 µm precision

18.09.2015

Tuning System

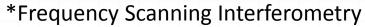
- K. Artoos, "Development of SRF Cavity Tuners for CERN", THPB060
- S. Verdù, "Lorentz Detuning for a Double-Quarter Wave Cavity", THPB051

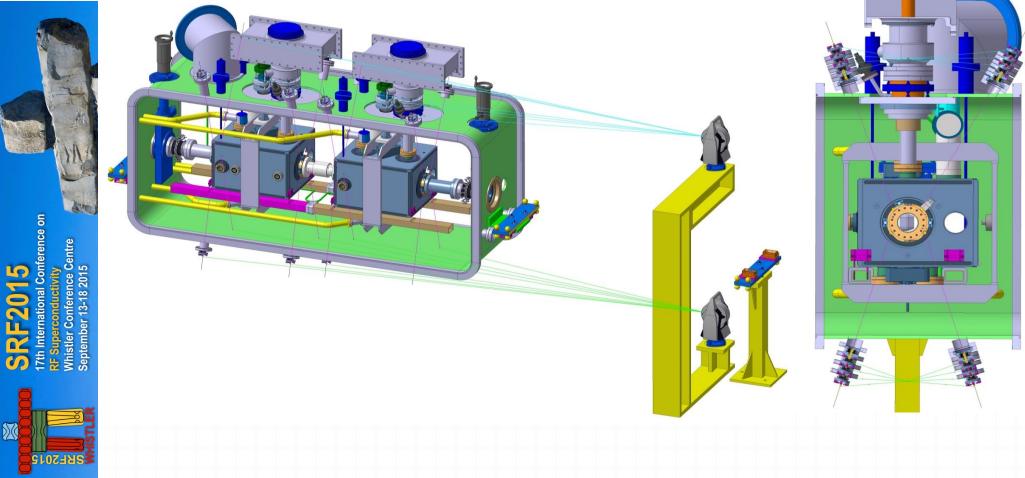
M


Conference on

57

Alignment and Support System

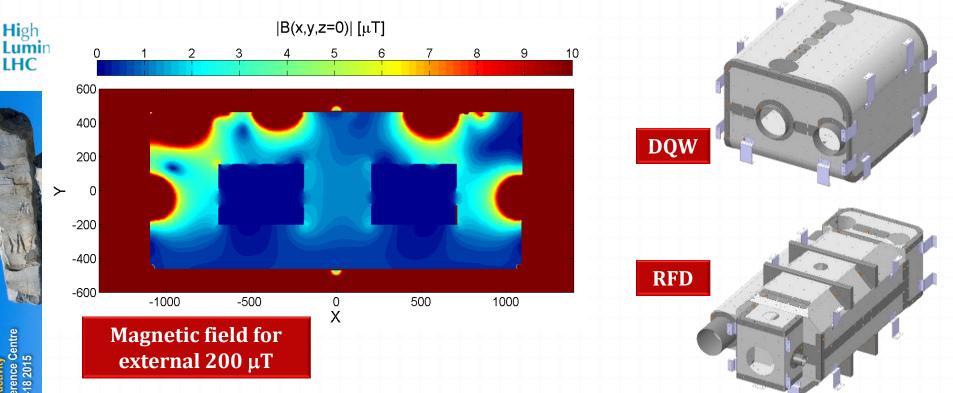

- Dressed cavities are supported by the FPC and 2 blades supports
- FPC and blades connected to a plate outside the cryomodule
- Attitude and position of the plate are actuated through 3 isostatic constraints
- Minimisation of thermal stresses and increase of the 1st mechanical mode



Alignment Monitoring System: FSI*

Alignment Monitoring System: BCAM*

*Brandeis CCD Angle Monitor



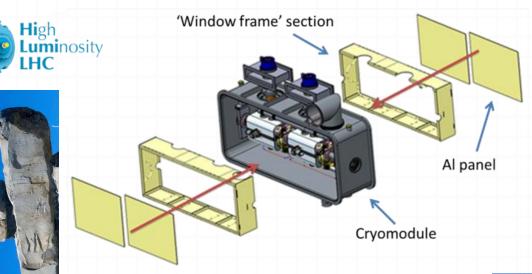
Conference on

5

DX(

Magnetic Shielding

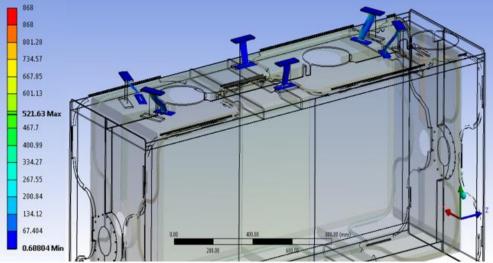
- Maximum acceptable magnetic field on the cavity: $1 \mu T$
- The external screen, in **mu-metal**, is not enough to shield the cavities
- One additional cold screen added per each cavity (Aperam Cryophy)


Conference on

57

erence Centre

13-18 2015


Thermal Shielding

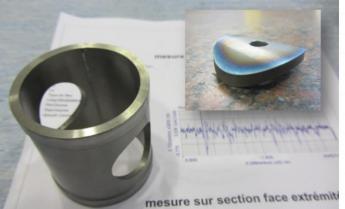
- Thermal screen: aluminium AW 6061-T6
- Thermalized with He gas (50÷70 K)
- Covered with MLI layers
- Goal: minimise the heat losses by radiation towards 2 K bath

- Optimized to :
 - sustain the shield weight
 - minimise the thermal stress at the vacuum tank interface

Thermal Shielding

 N. Templeton, "Design of the Thermal and Magnetic Shielding for the LHC High Luminosity Crab-Cavity Upgrade", TUPB101

5)(0


High Luminosity LHC

HOM

- Three HOM in DQW, two in RFD
- Bulk Nb antenna, He-cooled
- Coaxial lines evacuate 1 kW/HOM
- Fabrication started at CERN

International Conference on uperconductivity titer Conference Centre ember 13-18 2015

eptember

15

6X

Conference on

5)(0

-Iigh

HC

Luminosity

HOM

- Three HOM in DQW, two in RFD
- Bulk Nb antenna, He-cooled
- Coaxial lines evacuate 1 kW/HOM
- Fabrication started at CERN

- B. P. Xiao, "Overview of Recent HOM Coupler Development", **THBA04**
- A. R. J. Tutte, "FPC and HOM Test Boxes for HL-LHC Crab Cavities", THPB081
- C. Zanoni, "Engineering Design and Prototype Fabrication of HOM Couplers for HL-LHC Crab Cavities"

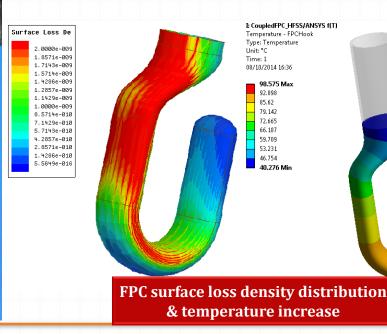
nternational Conference on

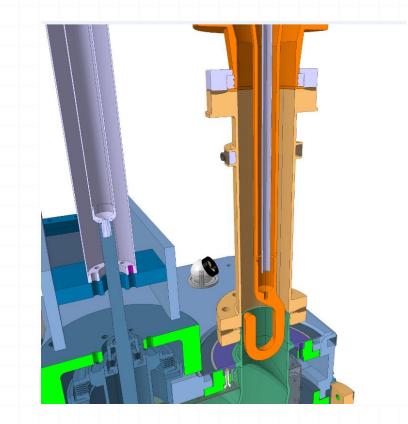
57

conductivity

Conference Centre

18 2015


uminosity


HC

FPC

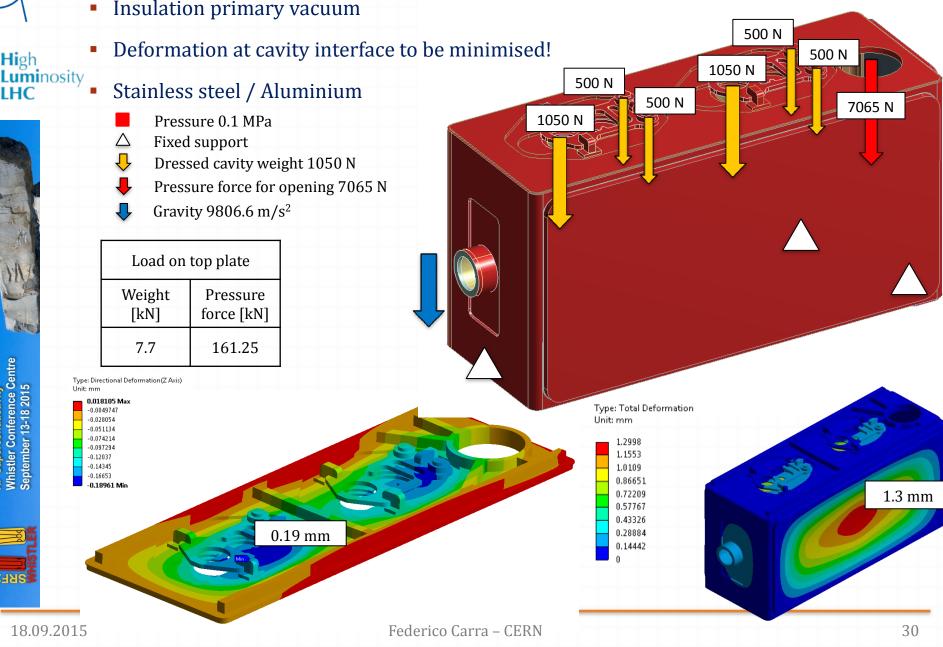
RF power 80 kW

- 3mm-thick stainless steel FPC can, intercepted with He gas circuit
- **Copper OFE antenna**, water-cooled
- Thermal loss on the antenna:
 - DQW ~ 100 W
 - RF ~ 60 W

- High temperature on the hook → high losses via radiation to the 2 K bath!
- Iterative HFSS/ANSYS analysis to evaluate T field on hook and radiation to cold mass
 - With the final solution: 0.7 W/FPC to 2K

Federico Carra – CERN

& temperature increase



Vacuum vessel

- Insulation primary vacuum

DX(

High Luminosity LHC Outline

Context

Heat balance

Summary

Heat Balance

		DQW		RFD			
High Lumi		2K	80K	2K	80K		
EHC	Static						
SRF2015 Thin International Conference on RF Superconductivity Whistler Conference Centre September 13-18 2015	Radiation	3	35	3	35	Cryomodule heat balance	
	CWT	0.2	2	0.2	2		
	Supports	0.8	30	0.8	30	35	
	FPC	4	100	4	100	30	
	Instrumentation	1	0	1	0		
	HOM/Pickup	2.5	10	1.7	10	2 ²⁵ 19,3	
	Tuner	0.3	10	0.3	10	0 <u>8</u> 20 Dynam	
	Total static	11.8	187	11	187	Static	
	Dynamic						
	Cavity	6	0	6	0	11,8 11	
	FPC	5.6	10	5.6	20	5	
	HOM/Pickup	7.2	120	5.5	80		
	Beam	0.5	0	0.5	0	DQW RFD	
	Total Dynamic	19.3	130	17.6	100		
SRF2015	TOTAL	21.1	217	20 (207		
10.00	TOTAL	31.1	317	28.6	287		
18.09.2015				20.0		ederico Carra – CERN 32	

High Luminosity LHC Outline

Context

Heat balance

Summary

Summary

Crab cavities are a key upgrade of the HL-LHC program, aiming to increase the LHC
 luminosity by a factor of 10

- Two different RF design have been proposed in the past years: DQW (vertical crabbing) and RFD (horizontal crabbing)
- The design of the cryomodules for testing in the SPS, prior to LHC installation, is smoothly advancing, thanks to the intense collaboration between CERN, UK and US
- Maximum flexibility (DQW/RFD, SPS/LHC) is one of the main goal of the engineering design
- Specification highly demanding: several solutions have rarely or never been adopted at CERN
- The design of the cryomodule is at an advanced stage and the fabrication of specific components has already started
- No showstoppers in view of SPS tests in 2017/18!

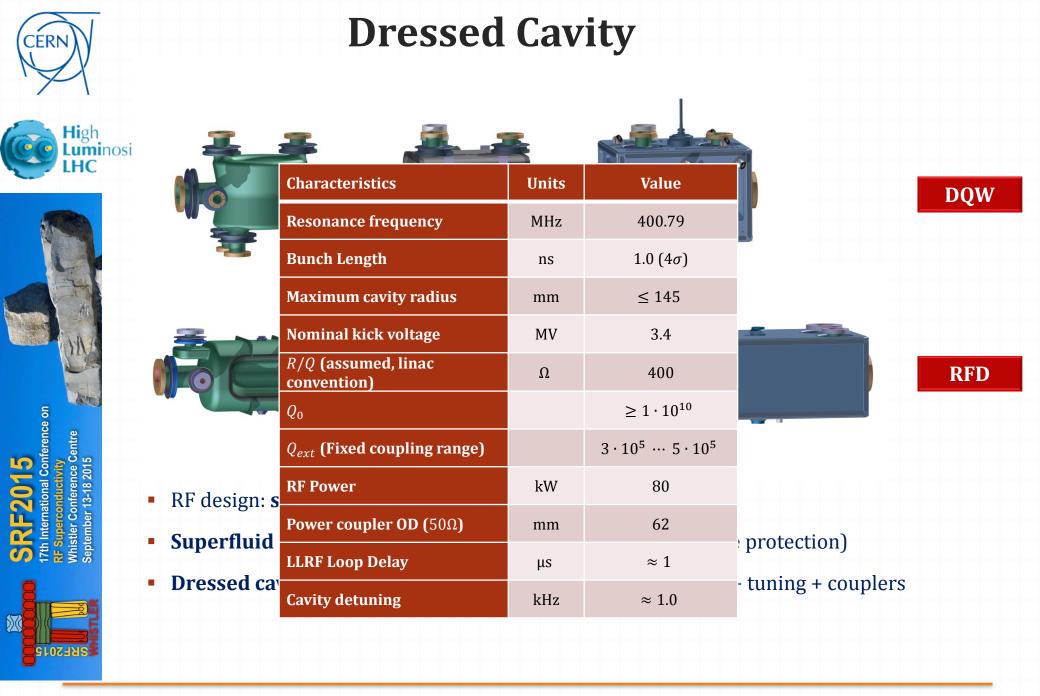
Acknowledgements

CRAB CAVITY AND CRYOMODULE DEVELOPMENT FOR HL-LHC*

F. Carra^{#1}, A. Amorim Carvalho¹, K. Artoos¹, S. Atieh¹, I. Aviles Santillana^{1,2},
S. Belomestnykh^{3,4}, A. Boucherie¹, J.P. Brachet¹, K. Brodzinski¹, G. Burt⁵, R. Calaga¹,
O. Capatina¹, T. Capelli¹, L. Dassa¹, S. U. De Silva⁶, J. Delayen⁶, T. Dijoud¹, H. M. Durand¹,
G. Favre¹, P. Freijedo Menendez¹, M. Garlaschè¹, M. Guinchard¹, T. Jones^{5,7}, N.Kuder¹,
S. Langeslag¹, R. Leuxe¹, Z. Li⁸, A. Macpherson¹, K. Marinov⁷, L. Marques Antunes Ferreira¹,
P. Minginette¹, E. Montesinos¹, F. Motschmann¹, T. Nicol⁹, R. Olave⁶, C. Parente¹, H. Park⁶,
S. Pattalwar⁷, L. Prever-Loiri¹, D. Pugnat¹, A. Ratti¹⁰, E. Rigutto¹, V. Rude¹, M. Sosin¹,
N. Templeton⁷, G. Vandoni¹, S.Verdú-Andrés³, G. Villiger¹, Q. Wu³, B. P. Xiao³, C. Zanoni¹

¹CERN, Geneva, Switzerland
 ²University Carlos III, 28911 Madrid, Spain
 ³BNL, Upton, NY 11973, USA
 ⁴Stony Brook University, Stony Brook, NY 11794, USA
 ⁵Cockroft Institute, Lancaster University, UK
 ⁶Old Dominion University, Norfolk, VA, 23529, USA
 ⁷STFC / Daresbury Laboratory, Daresbury, UK
 ⁸SLAC, Menlo Park, CA 94025, USA
 ⁹Fermilab, Batavia, IL 60510, USA
 ¹⁰LBNL, Berkeley, CA 94707, USA

High LHC Thank you for your attention!



Acknowledgements

5)(0

A. Amorim Carvalho, K. Artoos, S. Atieh, I. Aviles Santillana, S. Belomestnykh, A.

CRAB CAVITY AND CRYOMODULE DEVELOPMENT FOR HL-LHC*

F. Carra^{#1}, A. Amorim Carvalho¹, K. Artoos¹, S. Atieh¹, I. Aviles Santillana^{1,2},
S. Belomestnykh^{3,4}, A. Boucherie¹, J.P. Brachet¹, K. Brodzinski¹, G. Burt⁵, R. Calaga¹,
O. Capatina¹, T. Capelli¹, L. Dassa¹, S. U. De Silva⁶, J. Delayen⁶, T. Dijoud¹, H. M. Durand¹,
G. Favre¹, P. Freijedo Menendez¹, M. Garlaschè¹, M. Guinchard¹, T. Jones^{5,7}, N.Kuder¹,
S. Langeslag¹, R. Leuxe¹, Z. Li⁸, A. Macpherson¹, K. Marinov⁷, L. Marques Antunes Ferreira¹,
P. Minginette¹, E. Montesinos¹, F. Motschmann¹, T. Nicol⁹, R. Olave⁶, C. Parente¹, H. Park⁶,
S. Pattalwar⁷, L. Prever-Loiri¹, D. Pugnat¹, A. Ratti¹⁰, E. Rigutto¹, V. Rude¹, M. Sosin¹,
N. Templeton⁷, G. Vandoni¹, S.Verdú-Andrés³, G. Villiger¹, Q. Wu³, B. P. Xiao³, C. Zanoni¹

¹CERN, Geneva, Switzerland
 ²University Carlos III, 28911 Madrid, Spain
 ³BNL, Upton, NY 11973, USA
 ⁴Stony Brook University, Stony Brook, NY 11794, USA
 ⁵Cockroft Institute, Lancaster University, UK
 ⁶Old Dominion University, Norfolk, VA, 23529, USA
 ⁷STFC / Daresbury Laboratory, Daresbury, UK
 ⁸SLAC, Menlo Park, CA 94025, USA
 ⁹Fermilab, Batavia, IL 60510, USA
 ¹⁰LBNL, Berkeley, CA 94707, USA

SRF2015

SRF2015