

Performance of the Cornell ERL Main Linac Prototype Cryomodule

Fumio FURUTA Cornell University

On behalf of

Paul Bishop, Benjamin Bullock, Brian Clasby, Holly Conklin, Joe Conway, Ralf Eichhorn, Brendan Elmore, Andriy Ganshyn, Mingqi Ge, Daniel Gonnella, Terri Gruber, Daniel Hall, Yun He, Vivian Ho, Georg Hoffstaetter, Roger Kaplan, John Kaufman, Gregory Kulina, Matthias Liepe, Tim O'Connell, Hassan Padamsee, Sam Posen, Peter Quigley, John Reilly, Dave Rice, Daniel Sabol, James Sears, Valery Shemelin, John Sikora, Eric Smith, Karl Smolenski, Maury Tigner, Nick Valles, Vadim Veshcherevich

- Cornell ERL
- Module components
 - Cavities, VT and HTC results
 - Magnetic shielding
 - Couplers
 - HOM absorbers
- MLC cool down
- Summary

5 GeV, 100 mA, 8 pm emittances, 2 ps bunch length, 16 MV/m cw , Q > $2*10^{10}$, 200 W HOM power per cavity,

ERL 7-cells VT at 1.8K

1) Better mag. Shielding in HTC

R_{res} was reduced from 11nOhm (VT) to 3.2nOhm (HTC-1)

9/18/2015, SRF2015, Whistler

ERL 7-cell achievements in HTC

2) Thermal cycle to above Tc is beneficial

Magnetic shielding

- Three layers of magnetic shielding:
 - Vacuum Vessel
 (carbon steel)

- 80/40 K magnetic shield enclosing the cold mass
- 2 K magnetic shield enclosing individual cavities

Main Linac Input Coupler Testing

HOM Absorbers

9/18/2015, SRF2015, Whistler

F. Furuta, Cornell University

CLASSE facilities are operated by the Cornell Laboratory for Elementary Particle Physics (LEPP) and the Cornell High Energy Synchrotron Source (CHESS) with major support from the National Science Foundation

HOM Absorbers beam test

Current, bunch length	ΔT (beam pipe behind Abs.) coated/uncoated	ΔT (80K gas temp) coated/uncoated	ΔT (80K absorber temp) coated/uncoated	ΔT (5K flange next to cavity) <u>coated</u>	∆T, beam pipe to cavity <u>coated</u> /uncoated
25 mA, 3.0 ps	0.075/0.075	1.14/0.82	1.02/0.975	0.007	0.076/005
40 mA, 3.4 ps	0.2475/0.335	2.95/2.16	2.72/2.53	0.021	0.179/0.009
40 mA, 2.7 ps	0.2975/0.425	3.00/2.22	2.772/2.63	0.027	0.203/0.014

THBA05

- No charge-up of the HOM ceramics observed
- HOM heating was less than expected

9/18/2015, SRF2015, Whistler

MLC assembly at Newman lab

9/18/2015, SRF2015, Whistler

Moving MLC to Wilson lab

MLC in Wilson LOE

Heat exchanger can

9/18/2015, SRF2015, Whistler

Cryogenic sketch

	1 line for 2K supply	subcooled liquid @1.2 bar	 2K helium bath for cavities via 2K-2 phase line pre-cool gas for cool-down 90% heat load from RF losses in the cavities
	2 lines for 4.5-6K	3.0 bar He liquid Single phase flow	 Thermal intercept for HOM absorbers and couplers 2/3 dynamic heat load
9/18/20	3 lines for 40-80K	20 bar He gas	 Thermal intercept for HOM absorbers and couplers 40K thermal shield 90% heat load from HOM

F. Furuta, Cornell University

CLASSE facilities are operated by the Cornell Laboratory for Elementary Particle Physics (LEPP) and the Cornell High Energy Synchrotron Source (CHESS) with major support from the National Science Foundation.

Prototype MLC Cooling schematic

MLC and HXC Plumbing

MLC Cool down

Cool down target;

- 4k/h from room temp. to 80K
- dT<20K on 80K shield

Actual

[FreeChart For Time Plots

-20

(104.4-294.8K)

- ~1.3k/h from room temp. to 80K
- dT~15K on 80K shield.

Keep going now

Cool down starts on Sept. 8th Tue.

09-08-15 09-08-15 09-08-15 09-08-15 09-09-15 09-09-15 09-09-15 09-10-15 09-10-15 09-10-15 09-11-15 09-11-15 09-11-15 09-12-15 09-12-15 09-12-15 09-13-15 09-13-15 09-13-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-12-15 09-12-15 09-12-15 09-13-15 09-13-15 09-13-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-12-15 09-12-15 09-12-15 09-13-15 09-13-15 09-13-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-15-15 09-15-15 09-15-15 09-15-15 09-12-15 09-12-15 09-12-15 09-12-15 09-13-15 09-13-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-14-15 09-15-15 09-15-15 09-15-15 09-15-15 09-15-15 09-12-15 09-

9/18/2015, SRF2015, Whistler

F. Furuta, Cornell University

MLC shrinkage during cool down

CLASSE facilities are operated by the Cornell Laboratory for Elementary Particle Physics (LEPP) and the Cornell High Energy Synchrotron Source (CHESS) with major support from the National Science Foundation

MLC Today

A new ELOG entry has been submitted: Logbook: MLC Message ID: 32 Entry time: Thu Sep 17 14:49:03 2015 (EDT) Author: Peter Quigley

Type: Routine Category: General Subject: MLC Cooldown Status

MLC cooldown is complete!

Pump skid is running and operating for 1.8K. Setup for RF is next.

Details later today.

Alarm Handler is running in CESR Control room.

Peter Quigley for The Team.

9/18/2015, SRF2015, Whistler

MLC cavity RF test prep.

ERL7-7 will be the 1st cavity to test in MLC.
ERL7-7 VT results was 3e10 at 16MV/m, 1.8K.

9/18/2015, SRF2015, Whistler

MLC Milestones

Dec 2012	Design completed			
Jan. 2013	Order 6 remaining input couplers (6 month fab)			
Feb. 2013	3 unstiffened cavity built, testing started			
Apr. 2013	Award vacuum vessel PO (6 month fab) & HGRP (6 month)			
July 2013	Production of 3 stiffened cavities started			
Sept. 2013	In-house fabrication of string components complete (tuners, HOMs, tapers)			
Jan. 2014	Begin string assembly in clean room			
May 2014	Begin cold mass assembly and instrumentation (outside clean room)			
End of 2014	Cold mass assembly complete, MLC ready for moving			
Mar 2015	Moving MLC from Newman to Wilson			
July 2015	Begin MLC installation in Wilson LOE and cool down preparation			
Sept. 2015	MLC cool down starts and completed. Cavity RF test will start (2weeks/cavity, Q(E), tuner, HOM, HPC, microphonic, etc)			
End of 2015	Will complete cavity RF test			

Future

The Cornell-BNL FFAG-ERL Test Accelerator

- 1. Clear out the experimental hall
- 2. Install the injector and linac cryomodule
- 3. Install cryogenics and RF power
- 4. Commission the injector and cryomodule
- 5. Commission single-turn FFAG-ERL
- 6. Install FFAG magnets and arcs
- 7. Commission FFAG return loops
- 8. FFAG experiments

6 MeV

(3months, year 1) (3 months, year 1) (2 months, year 1) (3-6 months, year 1) (6 months, year 2) (4 months, year 2) (year 3) (year 3)

76, 146, 216, 286 MeV

+/- 70 MeV

White paper: http://arxiv.org/abs/1504.00588

6 MeV

- All MLC components had been tested successfully and assembled into cold mass.
- World record high-Q had achieved during HTC 7-cell test, 3.5e10(2K), 6e10(1.8K), 1e11(1.6K)
- Essences of Cornell's ERL high-Q cavities are
 - 1) good mag. shielding
 - 2) Thermal cycle to above Tc is beneficial
- MLC cool down starts in Wilson lab on Sept. 8th, completed on Sept 17th, Pump skid is running and operating for 1.8K.
- From room temp. to 80K, Cool down rate is about 1.3K, dT over 80K shield is kept ~15K during cool down.
- RF test will start after conference, one cavity test at once, 2weeks/cavity.
- thermal cycle will be applied to improve Qo.

Paul Bishop, Mitch Bush, John Dobbins, Edwin Foster Richard Gallagher, Greg Kulina, Gloria Lafave, Jeff Mangus Jamie Maywright, Jonathan McDonald, Kate Miller, Tobey Moore, Peter Quigley, Mike Ray, Dan Sabol, James Sears, Colby Shore, Eric Smith Vadim Veshcherevich, Dwight Widger

		8 Am 235 K	ZOQK	183		
WED DLBY TAMES	2p- 8p 8p-12	THR James 1252a Vadim 22-8a Peter 82-8p Dwight 5p-12	FRI Fumio 1279-8 DAN 800-5 MWGRI 5p-12	SAT Curley 12A - 8 Dursh7 8A - 4 DANI 4P - 12	147 SUN KARL 129-8 VADILL BA-4 ERIC 4P-12	121 MON 9 PETER 12A-8 TUE 8A-4 JAMES 9P-12

Shift table during room temp. to 80K cool

